

Doctoral School of Science Engineering Medicine Ph.D. Program in Computer Science Dept. of Computer Science University of Verona, Italy www.cristinasegalin.com

May 31st, 2016 – XXVIII Cycle

Overview

Goals and Contributions

Goals:

- 1. Enrich the computational aesthetics field, by **accounting for the personal sphere**
- 2. Consider an aesthetical preference as a **social signal**, that can be captured and interpret by **others**

Contributions:

Personal Aesthetics:

- A new soft biometric trait
- A new social signal for Personality Computing
 - Collection of a personality-augmented image dataset of aesthetical preferences: PsychoFlickr

Outline

Part I:

- Personal Aesthetics for Soft Biometrics
 - Computational Aesthetics (features)
 - A new soft biometric trait
 - Lasso Regression approach
 - Multiresolution Regression approach

Part II:

- Personal Aesthetics for Personality Computing
 - Social Signal Processing
 - A new social signal for Personality Computing
 - Multiple Instance Regression approach
 - Convolutional Neural Network

Conclusions and Future Works

Computational Aesthetics

Definition

Computational Aesthetics: aims at developing «computational methods that can make applicable aesthetic decisions in a similar fashion as humans can»

- Aesthetics: study of beauty and taste [Honeig '05]
- Computational Aesthetics focuses mostly on capturing and modeling a general and shared sense of beauty... [Adams '03]
- ... automatically select high aesthetic quality images from large image collections [Dhar et al. '11]
- ... but the beauty is in the **eye of the beholder**! [Beiderman & Vessel '03]

 \rightarrow personal aesthetics!

State of the art

Aesthetics - Psychology

- ✓ Applied mainly to paintings [Rawlings '98]
- ✓ It studies how individual preferences can be modeled, depending on the subject at hand [Furham '01]
- ✓ Guidelines of appreciation

Computational Aesthetics - Computer Vision

- ✓ Applied to digital images
- ✓ It aims at finding a general sense of beauty
- Many applications: prediction of aesthetic score, recommender systems, features engineering
- ✓ It studies features which capture perceptual and content based features [Biederman '06, Furham '01, Girshick '10]

Recently, it exploit the wisdom of crowds for learning common preferences (Flickr, etc) [Bacukhage'13, Dhar '11, Murray '12]

Computational Aesthetics Features:

Low level representation

Category	Name	L	Short Description		
Color	Use of light	1	Average pixel intensity of V channel		
	HSV statistics	3	Mean of S channel and standard deviation of S, V channels		
	Emotion-based	3	Amount of <i>Pleasure</i> , <i>Arousal</i> , <i>Dominance</i>		
	Circular Variance	1	<i>Circular variance</i> of the H channel in the IHLS color space		
	Colorfulness	1	Colorfulness measure based on Earth Mover's Distance (EMD)		
	Color Name	11	Amount of Black, Blue, Brown, Green, Gray, Orange, Pink, Purple, Red, White, Yellow		
	Edges	1	Total number of edge points, extracted with Canny		
	Level of detail	1	Number of regions (after mean shift segmentation)		
Composition	Regions	1	Average <i>size</i> of the regions (after mean shift segmentation)		
Composition	Low depth of field	9	Amount of focus sharpness in the inner part of the image w.r.t. the overall		
	(DOF)	3	focus		
	Rule of thirds	2	Mean of S,V channels in the inner rectangle of the image		
	Image parameters	1	Size of the image		
	Entropy	1	Image entropy		
Texture	Wavelet textures	12	Level of spatial graininess measured with a three-level (L1,L2,L3) Daubechies wavelet transform on the HSV channels		
	Tamura	3	Amount of Coarseness, Contrast, Directionality		
	GLCM-features	12	Amount of <i>Contrast</i> , <i>Correlation</i> , <i>Energy</i> , <i>Homogeneity</i> for each HSV channe		
	Objects	28	Objects detectors : in particular, here are the objects for which de-		
Content			tectors are available: people, plane, bike, bird, boat, bottle, bus, car, cat,		
			dog, table, horse, motorbike, chair. In all the cases we kept the number		
			of instances and their average bounding box $size$		
	Faces	2	Number and <i>size</i> of faces after Viola-Jones face detection algorithm		

Personal Aesthetics for Soft Biometrics

Soft Biometrics

Soft Biometrics: physical, behavioral or HCI human characteristics, classifiable in pre-defined human compliant categories, for establishing the identity of an individual.

Traits which accept this definition include, but are not limited to:

- Physical: skin color, eye color, hair color, presence of beard, presence of moustache, height, weight.
- Behavioral: gait, postures, gestures.
- Adhered human characteristics: clothes color, tattoos, accessories.
- HCI-based: use of Internet applications, chatting, browsing histories, mouse dynamics personal aesthetics?

,U₂₀₀

 $U_1, U_2, U_3, U_4, U_5, ..., U_i,$

 Goal: discriminate a single user from all the other ones

 Personal aesthetics is exploited into a biometric recognition/authentication system:

 Enrollment stage: the "preference model" of a user is learned from a set of preferred images

 Verification/recognition phase, the user model is tested with an unseen set of favorites preferred by a probe subject.

[P. Lovato M. Bicego C. Segalin A. Perina N. Sebe M. Cristani. Faved! biometrics: tell me which image you like and III tell you who you are. 12 IEEE Transactions on Information Forensics and Security 2014.]

MIR approach – Examples of users' preferred pictures

User 94

User 38

User 134

A New Soft Biometric Trait based on Personal Aesthetics MIR approach - Enrollment

Learning of the loading is performed by LASSO regression as a binary problem on all the training set

 $\mathbf{y}_{n} = \mathbf{w}^{(u)T} \mathbf{x}_{n} \quad \text{the feature vector}$ $\mathbf{y}_{n} = \mathbf{w}^{(u)T} \mathbf{x}_{n} \quad \text{the coefficients vector}$ $\text{where } E(\mathbf{w}^{(u)}) = \sum_{n=1}^{N_{TR}} (\mathbf{y}_{n} - \mathbf{w}^{(u)} \mathbf{x}_{n})^{2}$

subject to the sparsity constraint
$$\sum_{d=1}^{D} |w_d| \le t$$

MIR approach - Result of enrollment

MIR approach - Matching score

- Given an image n of the unknown subject v, the goal is to evaluate how probably it is preferred by a subject u (to check if u and v do match!)
- Intuitively, the expressivity of a single image is limited, so multiple test images (N_{TE}) belonging to the same subject are taken into account, and the final matching score is

$$\boldsymbol{\beta}_n^{(u,v)} = \mathbf{w}^{(u)\mathrm{T}} \mathbf{x}_n^{(v)}$$

$$\beta^{(u,v)} = \frac{1}{N_{TE}} \sum_{n=1}^{N_{TE}} \beta_n^{(u,v)}$$

MIR approach - Results of Authentication (Verification)

MIR approach - Results of Recognition (Identification)

Mapping Image Preferences on a Counting Grid

Organizing and making sense of Bag of Words

- Generative model for feature extraction and information visualization [Perina & Jojic CVPR 2011, under patenting]
- An image is modeled as an histogram of features

Mapping Image Preferences on a Counting Grid

Embedding map of user aesthetic preferences

 Inferences have been used to extract where the images of a user are, creating user maps

$$\gamma(\mathbf{i}) = \frac{\sum_{t} \sum_{\mathbf{k} | \mathbf{i} \in W_{\mathbf{k}}} q_{\mathbf{k}^{t} \cdot y^{t}}}{\sum_{t} \sum_{\mathbf{k} | \mathbf{i} \in W_{\mathbf{k}}} q_{\mathbf{k}^{t}}}$$

People's preferences are clusters in the grid!

Mapping Image Preferences on a Counting Grid

Embedding map of user aesthetic preferences

MRCG approach - Initialization step

MRCG approach – Visualization of mutliresolution CGs

MRCG approach - Enrollment

MRCG approach - Visualization of embedding maps

MRCG approach - Identification/Verification

MRCG approach – Identification/Verification results

MRCG approach - Feature Analysis

MRCG approach - Limitations

Computing Personality from Aesthetic Preferences

Statement: Social Signal Processing

Motivation and definition

Social Signal Processing: aims at understanding «social signals» i.e.,

✓ implicit, unconscious cues that communicate something, outside the verbal content

Social Signal processing

Social

Psychology

Pattern Recognition

that depend or	ı implicit	cognitive	processes	[Vinciarelli et al. 2009]
----------------	------------	-----------	-----------	---------------------------

Social cues	Example social behaviours						Tech.			
	Emotion	Personality	Status	Dominance	Persuasion	Regulation	Rapport	Speech analysis	Computer vision	Biometry
Physical appearance Height Attractiveness Body shape				 	\checkmark		\checkmark		$\sqrt[]{}$	
Gesture and posture Hand gestures Posture Walking	$\sqrt[]{}$	 		$\sqrt[]{}$	$\sqrt[]{}$	$\sqrt[]{}$	$\sqrt[]{}$		$\sqrt[]{}$	
Face and eyes behaviour Facial expressions Gaze behaviour Focus of attention		 	\checkmark \checkmark	 	 	 	\checkmark \checkmark \checkmark		 	\checkmark
<i>Vocal behaviour</i> Prosody Turn taking Vocal outbursts Silence	\checkmark \checkmark \checkmark	$\sqrt[]{}$		$\sqrt[]{}$		$\sqrt[]{}$	\checkmark \checkmark \checkmark	\bigvee \bigvee \bigvee		
Space and environment Distance Seating arrangement	\checkmark	\checkmark	\checkmark	\checkmark					$\sqrt[]{}$	

[Social Signal Processing Survey of an Emerging Domain. Vinciarelli, Pantic, Bourlard, JIVC]

The Big Five

- Extraversion: Active, Assertive, Energetic, Outgoing
- Agreeableness: Appreciative, Forgiving, Generous, Kind, Sympathetic, Trusting
- Conscientiousness: Efficient, Organized, Reliable, Responsible, Thorough
- Neuroticism: Anxious, Self-pitying, Tense, Touchy, Unstable, Worrying
- Openness: Artistic, Curious, Imaginative, Insightful

[Saucier, Goldberg, "The Language of Personality: Lexical Perspectives on the Five-Factor Model", in "The Five-Factor Model of Personality", Wiggins (ed.), 21-50, 1996]

State of the art

Implicit cognitive processes:

- ✓ Study the perception of profile pictures on social media [Fitzgerald'09]
- Perception of profile from all elements that can appear in a online profile [Gosling '08]
- Prediction of favorite images [Lovato '12]
- Emotions through the characteristics of paintings [Sebe '08]

Main result:

- Confirm the action of the implicit cognitive processes when using multimedia data
- Identification of correlations between aesthetic preferences and personality

State of the art

Aesthetics – Psychology

 Big Five personality traits are taken as individual characterization [Rammstedt '07]
 High Openness correlates to liking pictures with few elements [Rawling '98]
 High Openness correlates to liking pictures with ``complex'' and ``meaningful'' polygons [Rawling '98]
 Extrovert people prefer humanized landscape [Abello '86]

The Brunswick Lens Model

MIR approach – Dataset Collection

- 300 Flickr professional users (the data producer)
- For each user:
 - ✓ Take 200 random *faved* images, from which we extract
 - 15 computational aesthetic features [Datta '06, Machajdick'10]
 - 14 objects, scenes [Felzenszwalb et al. '10,Oliva et al. '01]
 - Let him fill a personality questionary (the Big Five Inventory 10)
 - It gives 5 scores (-4...4) for the personality traits of Openness, Consciousness, Extraversion, Agreableness, Neuroticism
 → the State

MIR approach– Dataset collection

- For each assessor:
 - ✓ Check the 200 favorites of each user
 - For each user, fill the BFI questionnaire, inferring how the user could be!
 - ✓ We check homogeneity in the scores and the average of the test was computed.
 → Perceived State

Personality from aesthetic preferences MIR approach - Goals

At this point we want to:

- 1. Measure correlations state/perc. state, state/feats, perc. state/feats
- 2. Given the faved pictures of a user
 - Infer the state
 - Infer the perceived state

MIR approach - Statistically significant correlations

Corr. state/perceived state \leq 0.26

state/feats

perceived state/feats ⁴³

MIR approach– Visualization of correlations

Extraversion

#People Size People # Faces

(perceived) High

(perceived) Low

MIR approach – Regression approach

- It is an interesting problem:
 - We have multiple images connected with only a user
 - Not all of them are equally important
 - Seems suitable the Multiple Instance Learning paradigm
 - So far, simple regression on a low dimensional image representation has been performed [Babenko '08]

MIR approach - Prediction results

Discussion

Approach Weaknesses and Breakthrough with CNN

Hand-crafted features:

- Computational Aesthetics hand-crafted features focus on designing features explaining how a particular image has been captured, discarding the content of the images
- Standard object recognition and feature extraction techniques might not be sufficient to capture significant dependences between pictures and personality traits
- Non linear relation between image features user likes
- Time consuming
- No disentangle of all explanatory factors of data

Deep/ Feature Learning:

- Automatic discovery of new high level representation
- Non-linear transformation of data
- Disantangle factors of observed data in multilple level of abstractions
- Distributed representation

Feature Learning via Convolutional Neural Networks

[A. Krizhevsky et al, Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems] [Y. Jia et al., Caffe: Convolutional architecture for fast feature embedding.]

CNN approach

CNN approach – fine-tuning process

CNN approach - Classification results

	SEI	LF	ATTRIBUTED		
	TRAIN	TEST	TRAIN	TEST	
0	0.57	0.53	0.73	0.61	
С	0.59	0.54	0.81	0.66	
Е	0.60	0.54	0.76	0.64	
А	0.57	0.54	0.76	0.64	
Ν	0.55	0.52	0.81	0.68	

Accuracy on training and testing set

	SE	LF	ATTR	RIBUTED		
	IEEEAC	our	IEEEAC	our		
Ο	0.49	0.53	0.59	0.62		
С	0.50	0.54	0.51	0.66		
Е	0.52	0.54	0.64	0.65		
А	0.47	0.54	0.56	0.64		
N	0.51	0.53	0.75	0.69		

[M. Cristani et al., Unveiling the multimedia unconscious: implicit cognitive processes and multimedia content analysis, in: Proceedings of the ACM international conference on Multimedia, ACM, 2013, pp.]

Comparison with previous approach

CNN approach - Learned Attributes

Extraversion

(perceived) Low

(perceived) High

CNN approach - Learned Attributes

(perceived) Low

Neuroticism

Agreeableness

(perceived) High

CNN approach - Learned Attributes

Conscientiousness

(perceived) Low

Openness

(perceived) High

Demo: http://psychoflickr.di.univr.it:8000/demo/

Demo: http://psychoflickr.di.univr.it:8000/demo/

VIPS PyschoFlickr Personality Demo

Predictions:

Openness	
Coscientiousness	
Extrovertion	
Agreableness	
Neuroticism	

Low Low High Low

High

Conclusions

Multimedia cues (number of faces, brightness...) Social cues e.g., how we spea our posture...)

- **1.** Key Idea: Multimedia content as social signal
 - Multimedia role has changed with Social Networks and Big Data
 - Images associated to people are spread through social platforms
 - Image not just as a message, a social signal: personal aesthetics preferences, that reveal something about its author
 - Implicit cognitive processes of image appreciation are unique and personal and can capture/produce this social signal to understand the state of a person

2. Soft biometric trait

- We considered images tagged as favorites by a person
- Proposed Computational Aesthetic features capturing the aesthetic of images
- Built Hybrid model personal aesthetic preferences for Re-identification

3. Personality Computing

- PyshcoFlickr dataset
- Multiple Instance Regression and Deep Learning approaches to map aesthetic preferences into personality traits, to model producer and consumer state
- Demo application

Future Perspective

- **1. Social network:** Infer demographic information from aesthetics preferences
- 2. Marketing: evaluation of impact of set of images for hypothetical customers
- **3. Viral Marketing:** implicit cognitive processes might contribute to explain and enhance virality
- 4. Big Data: making sense of large amount of data
- 5. Virtual agents: improve machines that exhibit human-like features and behavior like robots, animated characters, embodied conversation agents
- 6. Neuroscience/Phototherapy: understand the role/ activation of neurons when appreciating images
- 7. Online Games: Customization using user preferences and profile

PhD Publications

Journal

- C.Segalin, D.S.Cheng, Social Profiling through Image Understanding: Personality Inference using Convolutional Neural Networks, (submitted CVIU)
- C.Segalin, M. Cristani, A.Perina, A. Vinciarelli, The Pictures we Like are our Image: Continuous Mapping of Favorite Pictures into Self-Assessed and Attributed Personality Traits, IEEE on Affective Computing, 2016
- P. Lovato, M. Bicego, C. Segalin, A. Perina, N. Sebe, M. Cristani. "Faved!" biometrics: tell me which image you like and I'll tell you who you are. IEEE Transactions on Information Forensics and Security 2014.

Conference

- C.Segalin, F.Celli, B.Lepri, M.Kosinski, M.Cristani, L.Polonio, What your Facebook Profile Picture Reveals about your Personality: A Feature-based Approach, IEEE Multimedia (submitted ICMI)
- C. Segalin, A. Vinciarelli, M. Cristani and M. Musolesi. Visual Contagion: Understanding the Influence of Textual, Visual and Social Cues on Information Propagation in Twitter. (Submitted CIKM)
- **C.Segalin**, A.Perina, M.Cristani, *Biometrics on Visual preferences: A «Pump and Distill» Regression Approach*, ICIP 2014
- **C.Segalin**, A.Perina, M.Cristani, *Personal Aesthetics for Soft Biometrics: A generative Multi-resolution Approach*, ICMI 2014
- **C.Segalin**, A.Perina, M.Cristani, *Recognizing People by Their Personal Aesthetics: a Statistical Multi-level Approach*, ACCV 2014
- C. Segalin, A. Pesarin, A. Vinciarelli, M. Tait and M. Cristani. The expressivity of turn-taking: Understanding children pragmatics by hybrid classifiers. WIAMIS 2013
- M. Cristani, A. Vinciarelli, C. Segalin, A. Perina. Unveiling the multimedia unconscious: implicit cognitive processes and multimedia content analysis, ACM MM Brave New Idea 2013
- P. Lovato, A. Perina, D.S. Cheng, C. Segalin, N. Sebe, M. Cristani, We like it! mapping image preferences on the counting grid, ICIP 2013
- G. Roffo, C. Segalin, A. Vinciarelli, V. Murino and M. Cristani. Reading between the turns: Statistical modeling for identity recognition and verification in chats. AVSS 2013
- G. Roffo, M. Cristani, F. Pollick, C. Segalin and V. Murino. Statistical Analysis of Visual Attentional Patterns for Video Surveillance. CIARP. 2013

February-April 2016 Internship

Disnep Research, Pittsburgh

August 2016-2017 Postdoc

Thanks to all the VIPS people and ...

... to you for your attention !!