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Abstract. This paper presents a study on personal aesthetics, a recent
soft biometrics application where the goal is to recognize people by con-
sidering the images they like. Here we propose a multi-level approach,
where each level is intended as a low-dimensional space where the im-
ages preferred by a user can be projected, and similar images are mapped
nearby, namely a Counting Grid. Multiple levels are generated by adopt-
ing Counting Grids at different resolutions, corresponding to analyze
images at different grains. Each level is then associated to an exemplar
Support Vector Machine, which separates the images of an individual
from the rest of the users. Putting together multiple levels gives a bat-
tery of classifiers whose performances are very good: on a dataset of 200
users, and 40K images, using 5 preferred images as biometric template
gives 97% of probability of guessing the correct user; as for the verifica-
tion capability, the equal error rate is 0.11. The approach has also been
tested with diverse comparative methods and different features, showing
that color image properties are crucial to encode the personal aesthetics,
and that high-level information (as the objects within the images) could
be very effective, but current methods are not robust enough to catch it.

1 Introduction

Understanding the aesthetical preferences of a person, and specifically the images
that he/she likes, is a noteworthy ability of the human beings; usually linked to
high-level concepts such as the objects being portrayed in an image (“Jeff prefers
photos of cars instead of landscapes”), it can be also based to apparent low-level
visual properties such as having black/white colors, or full colors.

Having this capability transferred into a machine is without doubts of great
benefit for many applications: from recommender systems that suggest images of
interest to a particular user, to social aggregators which foster connections among
individuals sharing similar aesthetical preferences. Among these applications, a
novel one is emerging in these last years in the field of soft biometrics, aimed at
identifying or verifying a person given a set of preferred images, dubbed personal
aesthetics [1]. In general, soft biometric patterns differ from standard biomet-
rics since they do not require a voluntary cooperation of the user in providing
identification cues such as the face, the fingerprints etc.; even more notably, the
identification or verification operation can be conducted without letting the user
know about what is going on [2].
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Soft biometrics can be partitioned into physical/physyiological (age, gender,
ethnicity, height etc.) and behavioral biometrics, that is, encoding a characteris-
tic linked to how a person does diverse mental/physical tasks [3]. This last class
can be further exploded into authorship-based (linked to style peculiarities of the
individual - how he/she writes a text), motor skill-based (how a person performs
a particular physical task), purely behavioral (how a person solves a mental task)
and HCI-based biometrics. HCI-based biometrics assumes that every person has
a unique way to interact with an hardware device (a laptop, a smartphone or a
simple touchscreen). For example, some approaches use the mouse or keystrokes
dynamics to identify an individual [4,5]; some other more recent methods fo-
cused on how Internet applications are utilized, like chatting [6] or browsing
histories [7].

Personal aesthetics assumes that, given a set of preferred images of a user, it
is possible to extract a set of features which are discriminative for him/her; these
patterns can be used as biometric template, and employed for identification and
verification. Personal aesthetics fits surely into the behavioral soft biometrics,
while at a lower level of specification do not match with any of the previous
categories. For these reasons, it could be good to have a “preference-based”
category, whose approaches assume that a user may be identified by means of
his/her preferences on multimedia data.

The motivations of why focusing on personal aesthetics, and in particular on
images, are at least three; first of all, the huge presence of images in Internet: at
the moment this article is being written, 55M of new images are daily uploaded
on Instagram, with 1.2B of “likes” distributed over 16B of globally shared images
(See hittp://instagram.com/press/); on Flickr, each of the 87M users has, on
average, around 2K views per day (http://statsr.net/flickr-stats/); in the past
year, 128B of images have been uploaded on Facebook (http://goo.gl/0tWF.),
accessible to an audience of 1.26B users (http://expandedramblings.com/.). The
second motivation is the enormous diffusion of the “liking” activities, since liking
multimedia material is one of the most common social activities [8].

The third motivation is that, psychology and neuroscience have investigated
the interrelation of individual characteristics on aesthetic preferences [9], finding
that there are consistent ties between aesthetic appreciation and personality [10];
this last, being a stable characteristic of humans, ensures that personal aesthetics
are somewhat permanent, a desirable property for soft biometric traits [2].

In this paper, a novel approach for personal aesthetics is proposed, which
is based on the projection of the images into different latent spaces, each one
of them representing a particular level with which to consider the preferred im-
ages. These spaces are 2D Counting Grids (CGs) [11], that is, smooth manifolds
where visually similar pictures are mapped nearby. In the details, each CG is
characterized by a particular resolution, that in rough words models how much
visually similar should be the images in order to be close on the grid: the higher
the resolution, the stronger the visual similarity of close images. The presence
of multiple resolutions brings to evaluate differently grained similarity relations
among images.
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The approach assumes to have a set of users and some images preferred by
them, which compose a gallery and a probe image set; it consists in a serial
pipeline of initialization, enrollment and identification/verification stages.

In the initialization stage, multiple levels correspond to CGs of different reso-
lutions, which are learned with the gallery images of all the users, without using
ID labels. In the enrollment, the training data of a single user is projected on the
CGs at different resolutions, resulting in different embedding maps. These maps
are then fed into Support Vector Machines (SVMs), one for each CG. In particu-
lar the SVMs are trained as exemplar SVM, that is, using a single map as positive
sample, and as negative samples all the maps of the other users at that CG res-
olution. In the identification/verification stage, probe images are projected into
the CGs, forming another set of maps which are then classified by each of the
SVMs, and producing a joint prediction; this last is used to provide or verify the
identity of the user. It is worth noting that our method works with a varying
number of images, both for the enrollment and the identification/verification
stage, providing a versatile approach.

Through some explicative experiments, it is easy to capture the advantages
of our methods. The use of the 2D CGs allows to see the kind of images liked
by some users and disliked by the others; projecting on low-dimensional spaces
permits to use any kind and number of counting features for encoding images
(see more on this topic later on), contrarily to our previous approaches [1,12,13]
which are based on an explicit cues weighting; having CGs at multiple resolutions
avoids to deal with model selection issues (deciding a “correct” resolution for a
CG is a problem [11]). The approach is also effective; in particular, the tests have
been performed on the only real dataset currently available in the literature [1],
composed by 40000 images which belong to 200 users chosen at random from
the Flickr community. For each user, 200 preferred images (his “favorites”) have
been retained. As identification performance, using 5 preferred test images as
biometric signature gives 97% of probability of guessing the correct user (state
of the art was 83%); as for the verification capability, an equal error rate of 0.11
(best results was 0.25) is reached. Other than [12], we compared with several
other baselines and alternative strategies, including a simple PCA baseline and
multidimensional counting grids. Finally, we performed an extensive on the kind
of features which can be used to describe an images: overall, the features are
grouped into four families (see Table 1), i.e. color, composition, content and
textural properties, according to the taxonomy proposed in [14]. Our experiments
showed that using color and composition cues gives the best results, together
with some interesting observations about high level features.

The rest of the paper is organized as follows: in Sec. 2 a summarization of the
Counting Grid generative model is reported; in Sec. 3 the proposed approach is
detailed, explaining how it can be customized for the identification and verifica-
tion tasks. The approach is thoroughly tested in Sec. 4, and, finally, conclusions
future perspectives are given in Sec. 5.
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2 Mathematical Background: the Counting Grid Model

The Counting Grid (CG) is a generative model originally aimed at analyzing
image collections [11]. It assumes that images are i.i.d. random variables repre-
sented as histograms (or bags-of-features) {c,}.=1,....z, where each ¢, is a count-
ing variable which enumerates the occurrences of the z—th feature.

In its 2D version, a CG 7 is a 2D finite discrete grid (a flattened torus with
wrap-around at its extrema), spatially indexed by i = (z,y) € [1... E]x[1... E],
and containing normalized feature counts {7 .}, indexed by z = 1,..., Z. There-
fore, >, . = 1 for every location i on the grid. The generative process un-
derling the CG is as follows: an image (i.e. its BoF {c,}) is generated by se-
lecting a certain location k over the grid, calculating the distribution hyx , =
ﬁ iew, Ti,> by averaging all the words counts within the window Wy (of di-
mensions S x S and such that k is its upper left corner) and then drawing
features counts from this distribution. In practice, a small window is located in
the grid, averaging the feature counts within it to obtain a local probability mass
function over the features, and then generating from it an appropriate number
of features in the bag {c.}. In simpler terms, a CG could be think as a mixture
model, where the components are overlapping windows indexed by k.

This said, it appears clear that the position of the window k in the grid is a
latent variable; given k, the likelihood of {c.} is

1 Cz
plie: 3 = [Tt =  TT( X me) (1)
z z iceWg
Given that the ratio between the grid size ' x E of a Counting Grid and the
window size W x W, is smaller than number of images, this forces windows linked
to different images to overlap, and to co-exist by finding a shared compromise
in the feature counts located in their intersection. The overall effect of these
constraints is to produce locally smooth transitions between strongly different
feature counts by gradually phasing features in/out in the intermediate locations.
In practice, local neighborhoods in the grid represent similar concepts and images
mapped in close locations are somehow similar.
To learn a Counting Grid, the likelihood over all training images T' needs to
be maximized, and this can be written as

mw%m&mﬁﬁ(ZﬁJ9 (2)

t=1z=1 icWi

The sum over k makes it difficult to perform assignment to the latent vari-
ables (i.e., the components of the mixture) and so to estimate the model pa-
rameters and it is necessary to employ an EM algorithm. The procedure is a bit
complicated and involves different variational distributions; for this study it is
only necessary to quote the posterior distribution, calculated in the E step,

p(k'[{cl}) = qf cexp ¢l - log .- (3)

which is a probabilistic mapping of the ¢-th bag to the grid windows k. This
mapping is usually peaky, i.e. each image tends to map to a few nearby locations
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Fig. 1: The proposed approach, composed by three stages: mztwl@zatwn, where the
multi-resolution Counting Grid is learnt; enrollment, where the classifiers for each user
are trained, and identification/verification stages, where unknown personal aesthetics
are matched with the gallery.

in the grid. For details on the learning algorithm and on its efficiency, the reader
can refer to the original paper [11].

3 The Proposed Approach

The proposed three-step approach is sketched in Fig. 1. The initialization step is
applied on the training image set: it consists on creating a bag of features for each
image, and learning a set of Counting Grids, each at a different window size (i.e.,
the resolution of the CG). In the enrollment stage, the preferred images of each
user T, v = 1,...,U of the gallery set are mapped on the CG latent spaces, and
the resulting maps (one for each CG space) are fed into a discriminative classifier.
In the identification/verification stage, the test images of a probe subject are
transformed into bags of features, and projected into the CGs; in particular,
in the identification scenario, the resulting maps are given as input to all the
U gallery classifiers, producing U identification scores. These scores are used
to decide the best gallery user. In the case of the verification task, the maps
are given to a single gallery classifier (the one which is supposed to match the
identity of the probe), which accepts or rejects the signature considering a given
threshold.

3.1 Initialization Stage: Creating the Bags of Features

For the sake of comparison, we adopted the dataset used in [12], composed by
40000 images belonging to 200 users, chosen randomly from the Flickr social
network. For each user, the 200 last “favored” pictures have been retained, that
is, pictures of other photographers that have meet his/her preferences. Repeated
favored images across users are less than the 0.05%.
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Category [Name L [Short Description
Use of light 1 [Average pixel intensity of V channel [16]
HSV statistics 3 |Mean of S channel and standard deviation of S, V channels [14]
Color Emotion-based 3 |Amount of Pleasure, Arousal, Dominance [14,17]
Circular Variance 1 |Circular variance of the H channel in the IHLS color space [18]
Colorfulness 1 |Colorfulness measure based on Earth Mover’s Distance (EMD) [16, 14]
Color Name 1 Amount of Black, Blue, Brown, Green, Gray, Orange, Pink, Purple, Red,
White, Yellow [14]
Edges 1 [Total number of edge points, extracted with Canny [1]
Level of detail 1 [Number of regions (after mean shift segmentation) [19, 20]
Composition Regions 1 [Average size of the regions (after mean shift segmentation) [19, 20]
Low depth of field 3 Amount of focus sharpness in the inner part of the image w.r.t. the overall
(DOF) focus [16, 14]
Rule of thirds 2 |Mean of S,V channels in the inner rectangle of the image [16, 14]
Image parameters 1 [Size of the image [16, 1]
Entropy 1 [Image entropy [1]
Level of spatial graininess measured with a three-level (L1,L2,L3
Texture Wavelet textures 12 Daubochicspwavclc% transform on the HSV channels [16] ( )
Tamura 3 |Amount of Coarseness, Contrast, Directionality [21]
GLCM-features 12 Amount of Contrast, Correlation, Energy, Homogeneity for each HSV
channel [14]
Objects detectors [15]: in particular, here are the objects for which de-
Objects 28 tectors are available: people, plane, bike, bird, boat, bottle, bus, car, cat,
Content dog, table, horse, motorbike, chair. In all the cases we kept the number
of instances and their average bounding box size
Faces 2 |Number and size of faces after Viola-Jones face detection algorithm [22]

Table 1: Summary of all features. The column ‘L’ indicates the feature vector length
for each type of feature.

As for the features, we consider those of [12] for comparability, here re-
organized as in the computational aesthetics taxonomy of [14] (see Table. 1);
4 categories are present: color (distribution, diversity, purity, emotional content,
etc.), composition (size and number of homogeneous regions, amount of edges,
depth of field, rule of thirds, etc.), teztures (spatial distribution of visual proper-
ties) and content, which individuate semantic entities (cars, chairs and the like);
in this last case, robust probabilistic object detectors have been employed [15]
(for a complete list of all the detectable objects, see Table 1); other than the
number of instances of objects in an image, the average area of their bounding
boxes is considered.

It is worth noting that each feature extracted in the proposed approach
indicates the level of presence of a particular cue, i.e. an enumeration value or
an intensity count. This is needed for the modeling with the Counting Grid.

3.2 Initialization Stage: Multi-view Counting Grid Training

Given the bags of features of the training images, the extent F of the Counting
Grid and its window size S, a multi-resolution CG is learned. This amounts
to learn R = E — S Counting Grids, starting at resolution r = 1 (the lowest
resolution level) with the window of size E — 1, decreasing the window size of
one pixel at each time, until the minimum size S (the highest resolution level
r = R) is reached. At each resolution level r (except the first one), we used the
CG learnt at the previous step, i.e., 7"~1) as initialization for 7("). At the first
resolution level, the initialization is random.
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Using different windows sizes corresponds to vary the topology of the CG
latent spaces: a large window size leads to an embedding map where loosely
similar images are near-uniformly distributed over a large area and only the
very different images are strongly separated. Conversely, a small window size will
create a peaked map, where only highly similar images are projected nearby, and
weakly similar pictures are separated. Initializing a model training using the CG
of the previous level allows to mitigate local minima problems (as in the case of
a too sparse CG, with many images mapped very close) ensuring to use all the
CG extent for the mapping. In addition, this initialization strategy permits to
show how the mapping evolves at the different resolutions, refining spread and
unfocused projections into defined and intuitive thematic regions.

Obviously, the Counting Grids can not be directly visualized (each location
contains a distribution of features), but it is possible to create an image mosaic
using those images {ct} which give the highest posterior at each location k, i.e.,
p(kf|{ct}), at a given resolution level r. Adopting this visualization strategy,
Fig. 2 (left) shows CGs with E = 45 at resolutions r=>5 (S=40) and 35 (S=10):
while going from coarse (top) to finer (bottom) resolutions, the semantics of the
CG emerge as peaked regions, where each region carries out a different type
of images. In this case a set of images where the orange is predominant are
highlighted. As visible, at the coarser resolution the orange images lie in two
regions, where other tonalities are also present. Going to the highest resolution
has the effect of packing nearby those images into a compact area. On Fig. 2
(center) the CG at the highest resolution is reported.

Such a representation is shown in Fig. 2 (center) for a Counting Grid with
E = 45 at resolution r = R (S = 10, maximum resolution). As visible, close
images are visually similar, and semantic topics do emerge.

3.3 Enrollment Stage

Once the different Counting Grids are learnt, the images of each gallery user can
be projected within it, obtaining R maps per user, one map for each resolution.
The projection corresponds to a generative embedding, calculating a posterior
probability at each location k; once we have fixed a user u and a resolution r
the posterior is () = Z pk'|{ct}, 7)) (4)
teT,

where T, identifies the set of images of the user u: T}, can be different, de-
pending on how many gallery images are available for user u. Roughly speaking,
the main idea is to sum all the mappings of the images belonging to a given user,
thus highlighting the zones of the latent space where the images have been lo-
cated. The presence of Counting Grids at multiple resolutions allows to map the
preferences of the user from a very rough resolution (on the Counting Grids ob-
tained with large windows) until the finest resolution (the Counting Grid being
learned with a small sized window), where the map is usually peaked.

A graphical explanation of the mapping process is shown in Fig. 2 and Fig. 3;
in Fig. 2, together with the collage of the CG, on the right are reported the em-
bedding maps of a single resolution level (the maximum, i.e., r=R) for three
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Fig. 2: Visualization of Counting Grids: on the left, CGs with EF = 45 at resolutions
r=>5 (S=40, top) and 35 (S=10, bottom). On the center, the S = 10 grid is visualized
as a collage of images (see the text for the details on how the collage is created).
On the right, the embedding maps of a single resolution level (r=R) are reported for
three subjects, together with some random images preferred by them (better viewed
in colors).

Fig. 3: Embedding maps for user 38 of Fig. 2. Starting from the lowest resolution (r=1,
S=44) and going towards higher resolutions, the maps show refined blobs and areas,
identifying more precisely semantic areas, easily interpretable, on the grid.

subjects, together with some random images preferred by them. One can notice
two facts: 1) given a user, looking at his map and at the CG collage as reference,
does allow to easily understand which kind of images are his preferred; 2) com-
paring the maps of different users, one can understand possible similarities: first
two users from the top appear to share much the same preferences, while the
third one has radically diverse preferences. This fact is confirmed by checking
the random pictures of the users, on the right.

In Fig. 3 are reported the R mappings for the user 38 of Fig. 2. Starting
from very blurred and unstructured maps corresponding to the lower resolutions,
going toward higher resolution maps, blobs and distinct areas start to emerge,
refining the “semantic” knowledge of the preferences a user exhibits.

After the mapping step, the maps {’yl(f)}rzl,,__,R can be used as ID template

for user u; to this sake, a battery of exemplar SVMs {x\Sf)}T:L,__, r are learnt



Recognizing People by Their Personal Aesthetics 9

(one for each resolution), using as positive samples the maps fvaT) at the different
resolutions r (one map for each SVM) and as negative samples the maps of the
other users. In this study, Support Vector Machines with radial basis functions
have been employed. This step concludes the enrollment stage.

3.4 Identification and Verification Stage

In the identification/verification stage, all the probe images of a user v are
first encoded as bags of features. Subsequently, they are mapped on the multi-
resolution CG, and the resulting maps {77@},«:17“_7 r are used as input of the
SVMs related to the gallery user u; they classify the maps producing R scores
{C&%}T:L...,R that, once mediated, provide a single classification score ¢, ,. In
other words, each user produces R probe maps; each of them is given as test
input to the correspondent SVM of the gallery user, providing a confidence score
(the distance from the separating hyperplane). Averaging these scores over all
the resolutions gives the final confidence score. In the identification case, a con-
fidence score is associated to each gallery user; this allows to rank the scores,
keeping the highest ranked user as the best match with the probe. In the ver-
ification of the probe user, assumed to be the v—th, the confidence score given
by the v—th classifier is simply evaluated, accepting o rejecting the signature
depending on a threshold opportunely decided.

4 Experimental Evaluation

Several experiments are carried out to understand the potentialities of our ap-
proach. First of all, we investigate the ability of the features in capturing what
is liked by an user, ensuring the highest identification and verification perfor-
mance. Then, we compare our approach against a set of competitors, including
our previous work [12]: to this sake, the same experiments carried out in [12] have
been taken into account. Finally, we analyze how beneficial is to exploit CGs at
different resolutions, capturing also how informative is each single resolution.
Identification and verification applications are considered: in the identifica-
tion task the goal is to select the identity of an individual among a set of gallery
users, given a pool of images liked by him/her; the verification task amounts
to verify the identity of a particular user by means of his/her preferred images,
considering his/her gallery images. In both the cases, the parametrization of the
Counting Grids is the same: the size is fixed at E = 45 pixels for all of them,
while the (smallest) window size is set to S = 10; this generates a set of 35 maps
per user. The extraction of the image features takes 60 minutes per user (100
images), on a not optimized MATLAB code run on a 3.4 GHz processor with 16
Giga of RAM. The learning of the Counting Grid at a single resolution takes in
total 2 minutes, while the mapping + SVM training operation requires 3 seconds
for N = 100 images of the same user, on the same computer. Regarding the vari-
ability of the results in relation to the F and S values, the proposed approach
maintains similar performance when the ratio between E and S (also dubbed
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category rank 1 rank 5 rank 20 rank 50 nAUC

color 0.38+0.21 | 0.6540.01 | 0.86+£0.01 | 0.974+0.01 | 0.96+ <0.01

composition 0.114+0.01 | 0.254+0.02 | 0.45+0.02 | 0.694+0.12 | 0.81+0.01

texture 0.10£0.01 | 0.2140.01 | 0.39£0.03 | 0.644+0.02 | 0.7940.01

content 0.1040.01 | 0.2040.01 | 0.38+0.03 | 0.61+0.03 | 0.78+0.01
all 0.36£0.02 | 0.6440.02 | 0.86+0.01 |0.97+ <0.01| 0.96+ <0.01
color + composition + textures| 0.37+0.02 | 0.64+0.02 | 0.86+0.01 | 0.984+0.01 | 0.96+ <0.01
color + composition 0.424+0.02{0.71+0.02|0.91+0.01| 0.99+0.01 |0.97+ <0.01

Table 2: CMC scores for the identification task, 100 images fo reach gallery user and
5 images for the probe user

“capacity” in [11]) is bounded in the interval [3,5]. Even if E and S respect the
capacity ratio, performances seem to decrease when E < 10 and E > 70.

4.1 Feature Analysis

Following the Table 1, we divide the features in four categories: color, composi-
tion, texture and content. For each category, we instantiate a identification task:
given a probe signature built from an image or a set of images, the goal is to
guess the gallery user who tagged them; to do that, fixing a gallery user, the
average of the confidence scores produced by the exemplar SVMs (one score for
each resolution) is calculated. Hopefully, the gallery user with highest averaged
score corresponds to the probe user. As identification figure of merits, we use the
Cumulative Matching Characteristic (CMC) curve [23]; given a probe signature
of a user and the matching confidence score, the curves tells the rate at which
the correct user is found within the first £ matches, with all possible k spanned
on the x-axis (they are also called ranks). In all the following experiments CMC
plots are obtained averaging the CMC curves of 5 different experiments with
different gallery/probe splits. In this experiment, we use 100 images as forming
the gallery signatures, and 5 images for the probe signatures.

In Table 2 are reported the CMC values at different ranks, together with
the normalized Area Under the Curve (nAUC). As visible, the color category is
the most significative, followed by composition, texture and content. The poor
performance of the content features, that is, object detectors, is due to the fact
that object detectors produce many errors, both in precision and recall: this is
due to the nature of the Flickr photos, which are artistic and not reminiscent
those of the object recognition benchmark (PASCAL, CALTECH and the like).
We evaluate all the possible combinations of group of features (some of them are
reported in the table), with the best one formed by color and composition, which
will be sued in the following. Interesting, the textures seem to slightly degrade
the performances.

4.2 Identification Results

The results of the identification task are carried out following the protocol of
[12]. We cross-validate the parameters of the SVM classifier with Gaussian kernel
obtaining the best configuration with C' = 1000 and g = 0.001. As competitors,
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we report the performance of [12] (with the acronym LASSO) and [13] (PaD). In
addition, we set up some baselines, which may help in motivating some technical
choices we have made with our framework. The Ensemble method is the same as
our proposal, with the only difference that the CGs are learned independently,
without sharing their parameters; the PCA approach, which actually uses Prin-
cipal Component Analysis to create a low dimensional space projection space
where all the images can be projected. Once the projection of a probe signature
is performed, the resulting map containing the projected images (opportunely
quantized in order to be of the same dimension irrespective of the nature and
cardinalities of the signatures) is fed into the exemplar SVMs. In Fig. 4 (left)
the various CMC curves are reported by fixing the number of gallery images to
100, and the number of probe images to 5. As visible, our approach overcomes
all the competitors.

1

el - o ;,.F"i'__ Tie |rank 1|rank 5|rank 20|rank 50|\nAUC
T . ,fr’ 1019 [ 042 [ 066 | 0.86 | 0.90
os f e y 5| 042 | 071 | 071 | 0.99 | 0.97
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£ 05} . 100] 0.73 | 0.92 | 0.98 | 1.00 | 0.99
%0-5: : # Ti, |rank 1|rank 5|rank 20|rank 50\ nAUC
§oal/ 51029 | 059 | 0.83 | 094 | 0.95
o_aj ; 10[ 0.46 | 0.80 | 0.95 | 0.99 | 0.98
oall Gl B ety e 20 0.63 | 0.89 [ 0.98 | 1.00 | 0.99
i [13] - nAUC = 0,82, std = 0.020 50| 0.71 | 0.93 | 0.99 | 1.00 | 0.99
o o Ao som sd oo | [100] 0.71 | 0.92 | 0.98 | 1.00 | 0.99
» PCA - nAUC = 0.50, std = 0.000
00 Sb 160 150 200

Rank score

Table 3: Identification results, varying the
number Ty /Ty of images of gallery/probe
signatures (and fixing the other cardinality
to 100 for each user). All the results are with
a variance of less than the 1%.

Fig. 4: Comparative results for the iden-
tification task, with 5 images for the
probe signatures and 100 images for the
gallery signatures.

In Table. 3 we report (in the upper part) the performance of our approach
while varying the number of test images used to compose the probe signature of
a user, while keeping the number of images used to build the gallery signature
fixed to 100; in the lower part we report the analogue figure while varying the
cardinality of the gallery signatures and keeping fixed to 100 the cardinality of
the probe signature. Intuitively, augmenting the cardinality of the gallery/probe
signature does ameliorate the identification performance.

To test the importance of having different CG resolutions, we perform a set
of identification trials while using 100 images of gallery and 100 of probe, with
1, 2, 5, 10, 20 and 35 different resolutions (35 is the total number of resolutions
employed). In the case of a single resolution, all the S windows size between 10
and E — 1 = 44 have been independently evaluated, averaging their recognition
performance. For evaluating higher numbers of resolutions, different windows size
have been sampled without replacement (depending on the cardinality being
evaluated) and ranked in descending order. After that, the window with the
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Fig. 5: Identification scores while varying the number of resolution employed, and
analysis at rank 1.

largest size has been learned with random initialization; the obtained CG has
been used as prior for the second ranked one and so on. Results (averaged over
35 gallery/probe splits) are portrayed in Fig. 5.

As expected, increasing the number of resolution levels does augment the
identification capabilities. To better understand the role of each resolution, each
one of them has been evaluated independently (under the same experimental
protocol, Ty, = Ty = 100, 35 repetitions), reporting in Fig. 5 the rank-1 iden-
tification score (standard deviation < 1% in all the cases). It emerges that per-
formance is better while going toward higher resolutions, even if no one of them
can reach the same score one can get when using the joint framework (that is,
0.71, see Table. 3). This means that every resolution level carries out a different
complementary analysis of the images.

4.3 Verification Results

In the verification scenario, the capability of the system to verify if a signature
matches a given identity is evaluated. For this purpose, a ROC curve is computed
for every user u, where client images are taken from the probe set of the user
u and impostor images are taken from all the other probe sets. Depending on
the number of images taken into account, different kind of client /impostor maps
may be built. Given an “authentication threshold”, i.e., a value over which the
subject is authenticated, sensitivity (true positive rate) and specificity (true
negative rate) can be computed. By varying this threshold the ROC curve is
finally obtained. In Fig. 6 the authentication ROC curves are portrayed; other
than AUC, the equal error rate (EER) is also reported, which models the error
when sensitivity and 1-specificity have an equal value.

Even in this case, augmenting the number of test images per signatures incre-
ments the performance; as for varying the number of images used for the gallery
signatures, and the number of resolutions for producing the multi-scale CG, ana-
logue results than those obtained for the recognition task can be observed, so
the results have been omitted.
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Fig. 6: Verification scores: the ROC curves (together with AUC and EER score) are
reported while varying the number of probe (left) and gallery (right) images employed.

5 Conclusions

Personal aesthetics is a recent soft biometrics trait that emerged thanks to the
large diffusion of images in Internet and to the possibility of liking them. The idea
of capturing the identity of people using their aesthetical preferences underlies
the capability of understanding their personal tastes. This approach does both
the things in a satisfying fashion: Counting Grids allow to project images in a
latent space where similar pictures are mapped nearby, so that semantic areas
can emerge and being observed and interpreted. In this respect, future work
should focus on the kind of features to use, and in particular on how medium-high
level features can be crafted, since object detection have shown to be unreliable;
we think that deep learning could be well suited for this aim. On the other
side, our method shows that CGs induce latent representations (the embedding
maps) very informative for discriminating users by means of kernel machines,
especially when multiple images preferred by a single individual are available.
In this regard, future work should be spent in testing a real application where
personal aesthetics are exploited, encouraging their use in genuine soft /biometric
scenarios.

References

1. Lovato, P., Perina, A., Sebe, N., Zandona, O., Montagnini, A., Bicego, M., Cristani,
M.: Tell me what you like and I'll tell you what you are: discriminating visual
preferences on Flickr data. In: Computer Vision—-ACCV 2012. Springer (2013)
45-56

2. Dantcheva, A., Velardo, C., D’angelo, A., Dugelay, J.L.: Bag of soft biometrics for
person identification. Multimedia Tools and Applications 51 (2011) 739-777

3. Yampolskiy, R.V., Govindaraju, V.: Behavioural biometrics: a survey and classifi-
cation. International Journal of Biometrics 1 (2008) 81-113

4. Pusara, M., Brodley, C.E.: User re-authentication via mouse movements. In:
Proceedings of ACM workshop on Visualization and data mining for computer
security. (2004) 1-8

5. Rybnik, M., Tabedzki, M., Saeed, K.: A keystroke dynamics based system for
user identification. In: Computer Information Systems and Industrial Management
Applications, 2008. CISIM’08. 7th, IEEE (2008) 225-230



14

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

C. Segalin et al.

Roffo, G., Segalin, C., Vinciarelli, A., Murino, V., Cristani, M.: Reading between
the turns: Statistical modeling for identity recognition and verification in chats.
In: 10th IEEE International Conference on Advanced Video and Signal Based
Surveillance, AVSS (2013) 99-104

Olejnik, L., Castelluccia, C., Janc, A., et al.: Why johnny can’t browse in peace:
On the uniqueness of web browsing history patterns. In: 5th Workshop on Hot
Topics in Privacy Enhancing Technologies (HotPETs ). (2012)

Jin, X., Wang, C., Luo, J., Yu, X., Han, J.: Likeminer: a system for mining the
power of ’like’ in social media networks. In: Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining. (2011) 753-756
Joshi, D., Datta, R., Fedorovskaya, E., Luong, Q.T., Wang, J., Li, J., Luo, J.:
Aesthetics and emotions in images. Signal Processing Magazine, IEEE 28 (2011)
94-115

Furnham, A., Walker, J.: The influence of personality traits, previous experience of
art, and demographic variables on artistic preference. Personality and Individual
Differences 31 (2001) 997-1017

Perina, A.; Jojic, N.: Image analysis by counting on a grid. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). (2011) 1985-1992
Lovato, P., Bicego, M., Segalin, C., Perina, A., Sebe, N., Cristani, M.: Faved!
biometrics: Tell me which image you like and i’ll tell you who you are. IEEE
Trans. on Information Forensics and Security 9 (2014) 364-374

Segalin, C., Perina, A., Cristani, M.: Biometrics on visual preferences: A ”Pump
and Distill” regression approach. In: IEEE International Conference on Image
Processing (ICIP). (2014)

Machajdik, J., Hanbury, A.: Affective image classification using features inspired
by psychology and art theory. In: International Conference on Multimedia, ACM
(2010) 83-92

Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE Trans. on Pattern Analysis
and Machine Intelligence 32 (2010) 1627-1645

Datta, R., Joshi, D., Li, J., Wang, J.: Studying aesthetics in photographic images
using a computational approach. In: ECCV. Volume 3953. Springer Berlin /
Heidelberg (2006) 288-301

Valdez, P., Mehrabian, A.: Effects of color on emotions. Journal of Experimental
Psychology: General 123 (1994) 394

Mardia, K., Jupp, P.: Directional Statistics. Wiley (2009)

Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space
analysis. IEEE TPAMI 24 (2002) 603 — 619

Georgescu, C.: Synergism in low level vision. In: International Conference on
Pattern Recognition. (2002) 150-155

Tamura, H., Mori, S., Yamawaki, T.: Texture features corresponding to visual
perception. IEEE Trans. on Systems, Man and Cybernetics 8 (1978) 460473
Viola, P.; Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: IEEE Conference on CVPR. (2001) 511-518

Moon, H., Phillips, P.J.: Computational and performance aspects of PCA-based
face-recognition algorithms. Perception-London 30 (2001) 303-322



