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What is this work about?
We propose a soft biometric multi-level approach to recognize people by

their personal aesthetics on a dataset of 200 users, 40K images. Given a set

of preferred image of a user, it extracts a set of features which are - )
discriminative for his/her. Embedding map for user 38. From the lowest resolution (r 1, S=44) to the

The Proposed Abproach higher, identifying semantic areas. The main idea is to show all the

Initialization step Enrollment Identification/verification mappings of the images belonging to a given user, thus highlighting the
zones of the latent space where the images have been located.

Identification Results and Feature Anal
The identification task serves to guess the identity of a subject. Probe
embedding maps are given as input to all the U gallery classifier, producing
U identification scores. Fixing a gallery user, the average of the confidence
scores produced by the exemplar SVMs (one for each resolution) is

s cirbadding calculated. The gallery user with the highest averaged score corresponds to
“ﬁ"ﬂmmww“:m Embedding S the probe user.
- Cpovs Cpunn G | MAPS Build a CMC curve: given a probe signature of a user and the matching
Bags of features confidence score, the curves tell the rate at which the correct user is found
. within the first k matches, with all possible k spanned on the x-axis.
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) | CMC scores, 100 img. for each aIIer user and 5 img. for the probe user.
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Rank score

(L) Results with 5 img./probe set and 100 img/gallery set, comparing with

ENK()LLMEN]‘ STAGE: other baselines. (R) Results of our approach varying the num. T;, /T, img.
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WENTIFICATION /VERIFICATION - Classification: orf o C3resnAUC=098) ) © Y
All probe images of user u are encoded as BoF % 0 100 150 20 %o 1520 25 30 35 40 45

* Project them on the multi-resolution CG Identification scores varying the num. of resolutions and analysis at rank 1.

* Resulting probe embedding maps {yy)}rzl’__”R used as input of the Verification Results
SVMs related to gallery user u, producing R scores Verify the identity of a user by his/her preferred images. For every user u,

* Average the R scores to provide a single classification score probe set of user u are taken as client images, all the other probe sets as

Multl -view Countm Grld impostor images. The maps are given to a single classifier, which acce.pts or
e TN o SR R \ rejects the signature considering a given “authentication threshold’, i.e. a
oo ERD = r"‘d ok value over which the subject is authenticated. Sensitivity (TPR) and
ettt e ; - specificity (TNR) can now be computed. By varying this threshold, the ROC
curve is obtained
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(L) Collage of images of CG. (R) Embedding maps of a single r = R with

ROC curves with AUC and EER scores while varying num. of probe (L) and
some images preferred by three users.

gallery (R) images.
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