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ABSTRACT
Authorship attribution (AA) aims at recognizing automati-
cally the author of a given text sample. Traditionally applied
to literary texts, AA faces now the new challenge of recog-
nizing the identity of people involved in chat conversations.
These share many aspects with spoken conversations, but
AA approaches did not take it into account so far. Hence,
this paper tries to fill the gap and proposes two novelties
that improve the effectiveness of traditional AA approaches
for this type of data: the first is to adopt features inspired
by Conversation Analysis (in particular for turn-taking), the
second is to extract the features from individual turns rather
than from entire conversations. The experiments have been
performed over a corpus of dyadic chat conversations (77 in-
dividuals in total). The performance in identifying the per-
sons involved in each exchange, measured in terms of area
under the Cumulative Match Characteristic curve, is 89.5%.

Categories and Subject Descriptors: H.3.1 [Content
Analysis and Indexing]. General Terms: Experimenta-
tion. Keywords: Authorship Attribution, Biometry, In-
stant Messaging, Chat, Social Media, Stylometry.

1. INTRODUCTION
Authorship Attribution (AA) is the domain aimed at au-

tomatically recognizing the author of a given text sample.
Common techniques use stylometric cues that can be split
into five major groups: lexical, syntactic, structural, content-
specific and idiosyncratic [1]. Earlier approaches for auto-
matic AA focused on printed material, typically books, and
mainly exploited lexical (e.g., the frequency of characters
and words) and syntactic features (e.g., punctuation, ar-
ticles, propositions and other functional words) [7]. The
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diffusion of Internet has shifted the AA attention towards
online texts (web pages, blogs, etc.) electronic messages
(e-mails, tweets, posts, etc.), and other types of written in-
formation that are far shorter than an average book, way
more informal and much richer in terms of expressive ele-
ments like colors, layout structures, fonts, graphics, emoti-
cons, etc. Efforts to take into account such aspects at the
level of both structure and syntax were reported in [5]. In
addition, content-specific and idiosyncratic cues (e.g., topic
models and grammar checking tools) were introduced to un-
veil deliberate stylistic choices [3].

Nowadays, one of the most important AA challenges is the
identification of people involved in chat (or chat-like) con-
versations. The task has become important after that social
media have penetrated the everyday life of many people and
have offered the possibility of interacting with persons that
hide their identity behind nick-names or potentially fake pro-
files. So far, standard stylometric features have been em-
ployed to categorize the content of a chat [11] or the behav-
ior of the participants [15], but attempts of identifying chat
participants are still few and early. Furthermore, the sim-
ilarity between spoken conversations and chat interactions
has been neglected while being a key difference between chat
data and any other type of written information.

Hence, this paper proposes a set of novel stylometric fea-
tures that take into account the conversational nature of
chat interactions. Some of them fit in the taxonomy pro-
posed at the beginning of this section, but others require to
define the new group of conversational features. The reason
is that they are based on turn-management, probably the
most salient aspect of spoken conversations that applies to
chat interactions as well. In conversations, turns are inter-
vals of time during which only one person talks. In chat
interactions, a turn is a block of text written by one partic-
ipant during an interval of time in which none of the other
participants writes anything. Like in the case of automatic
analysis of spoken conversations, AA features are extracted
from individual turns and not from the entire conversation.

The experiments are performed over a corpus of dyadic
chat conversations that involve 77 subjects. The average
number of available words per subject is 615 and the AA
performance, measured with the area under the Cumulative
Match Characteristic curve, is 89.5%.

The rest of the paper is organized as follows: Section 2
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sketches the literature on application of AA to chat data;
Section 3 presents the new features proposed in this work;
Section 4 reports on experiments and results and the final
Section 5 draws conclusions and outlines future perspectives.

2. RELATED WORK
The application of AA to chat conversations is recent

(see [12] for a survey). Typically, state-of-the-art approaches
extract stylometric features from the data and use discrim-
inative classifiers to identify the author (each author cor-
responds to a class). Table 1 is a synopsis of the features
applied so far in the literature. The extraction process is al-
ways applied to the entire conversation and individual turns,
while being the basic blocks of the conversation, are never
used as analysis unit. In [14], lexical, syntactic, structural
and content-specific features are fed to SVM, Neural Net-
works and decision trees on 20 subjects. The work in [2]
adds idiosyncratic features to the previous ones and applies
a PCA-like projection onto a low-dimensional, but highly
discriminant space to identify 100 potential authors of e-
mails, Instant Messages, feedback comments and program
code (thousands of words per identity). The problem of the
size (i.e., the number of conversations per author) of the
training set has been studied in [8], with different classifiers
and 20 subjects. Special characters (e.g., emoticons and ab-
breviations) have been exploited in [11] with decision trees,
K-nearest-neighbor and naive Bayes classifiers for discrimi-
nating 4 subjects.

The main limitation of the works above is that they do
not process chat exchanges as conversations, but as normal
texts. This work tries to overcome such limitation and intro-
duces a new class of features that account for the presence
of turns (see below) in chat conversations. Furthermore, the
proposed approach does not apply the feature extraction
process to the entire conversation (like in all works above),
but to individual turns.

3. FEATURE EXTRACTION
The data set includes N = 77 subjects, each involved

in a dyadic chat conversation with an interlocutor. The
conversations can be modeled as sequences of turns, where
“turn” means a stream of symbols and words (possibly in-
cluding “return” characters) typed consecutively by one sub-
ject without being interrupted by the interlocutor. The fea-
ture extraction process is applied to T consecutive turns
that a subject produces during the conversation. Because of
privacy and ethical issues, features that do not involve the
content of the conversation can be used, namely number of
words, characters, punctuation marks and emoticons.

In standard AA approaches, the features are extracted
from a chat conversation as a whole. In our case, we ex-
tract the features from each turn individually and then we
estimate their statistics (mean value, histograms, etc.). In
particular, we opted for exponential histograms where the
size of the bins changes according to the value of the fea-
ture (bins are smaller for small values and larger for higher
values). The reason is that the turns are short and small
values tend to be more represented. This choice is shown to
improve the performance (see below).

The introduction of turns as a basic analysis unit allows
one to introduce features that explicitly take into account
the conversational nature of the data and mirror behavioral

measurements typically applied in automatic understanding
of social interactions (see [13] for an extensive survey):

• Turn duration: the time spent to complete a turn
(in hundredth of seconds); this feature accounts for
the rhythm of the conversation with faster exchanges
typically corresponding to higher engagement.

• Writing speed (two features): number of typed char-
acters -and words- per second (typing rate); these two
features indicate whether the duration of a turn is sim-
ply due to the amount of information typed (higher
typing rates) or to cognitive load (low typing rate),
i.e. to the need of thinking about what to write

• Number of “return” characters: since these latter
tend to provide interlocutors with an opportunity to
start a new turn, high values of this feature are likely
to measure the tendency to hold the floor and prevent
others from “speaking” (an indirect measure of domi-
nance).

• Mimicry: ratio between number of words in current
turn and number of words in previous turn; this feature
models the tendency of a subject to follow the conver-
sation style of the interlocutor (at least for what con-
cerns the length of the turns). The mimicry accounts
for the social attitude of the subjects.

We call these features conversational features.

No. Feature Range
1 # words [0,260]
2 # emoticons [0,40]
3 # emoticons per word [0,1]
4 # emoticons per characters [0,0.5]
5 # exclamation marks [0,12]
6 # question marks [0,406]
7 # characters [0,1318]
8 average word length [0,20]
9 # three points [0,34]
10 # uppercase letters [0,94]
11 # uppercase letters/#words [0,290]
12 turn duration [0,1800(sec.)]
13 # return chars [1,20]
14 # chars per second [0,20(ch./sec.)]
15 # words per second [0,260]
16 mimicry degree [0,1115]

Table 2: Stylometric features used in the experi-
ments. The symbol “#” stands for “number of”. In
bold, the conversational features.

Table 2 provides basic facts about the features used in
the experiments. In the case of 1-13 and 16 the features
correspond to the exponential histograms (32 bins) collected
from the T turns. In the case of 14 and 15, the features
correspond to the average estimated over the T turns. This
architectural choice maximized the AA accuracy.

4. EXPERIMENTS
The experiments have been performed over a corpus of

dyadic chat conversations collected with Skype (the lan-
guage is Italian). The conversations are spontaneous, i.e.
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Group Description Examples References

Lexical

Word level
Total number of words (=M), # short words/M, # chars in
words/C, # different words, chars per word, freq. of stop words

[2, 8, 11, 12, 14]

Character level
Total number of characters (chars) (=C), # uppercase chars/C,
# lowercase chars/C, # digit chars/C, freq. of letters, freq. of
special chars

[2, 11, 12, 14]

Character|Digit n-grams Count of letter|digit n-gram (a, at, ath, 1 , 12 , 123) [2, 12, 14]
Word-length distribution Histograms, average word length [2, 8, 11, 12, 14]
Vocabulary richness Hapax legomena, dislegomena [2, 8, 12, 14]

Syntactic
Function words Frequency of function words (of, for, to ) [2, 8, 11, 12, 14]
Punctuation Occurrence of punctuation marks (!, ?, : ), multiple !|? [2, 8, 11, 12, 14]
Emoticons|Acronym :-), L8R, Msg, :( , LOL [11, 12]

Structural Message level Has greetings, farewell, signature [2, 8, 11, 12, 14]

Content-specific Word n-grams
Bags of word, agreement (ok, yeah, wow), discourse mark-
ers|onomatopee (ohh), # stop words, # abbreviations ,
gender|age-based words, slang words

[2, 8, 11, 12, 14]

Idiosyncratic Misspelled word Belveier instead of belierver [2, 8, 11, 12]

Table 1: Synopsis of the state-of-the-art features for AA on chats. “#” stands for “number of”.

they have been held by the subjects in their real life and not
for the purpose of data collection. This ensures that the be-
havior of the subjects is natural and no attempt was made
to modify the style in any sense. The number of turns per
subject ranges between 60 and 100. Hence, the experiments
are performed over 60 turns of each person. In this way,
any bias due to differences in the amount of available mate-
rial should be avoided. When possible, we selected different
turns (maintaining their chronological order) in order to gen-
erate different AA trials. The average number of words per
subject is 615. The 60 turns of each subject are split into
probe and gallery set, each including 30 samples.

The first part of the experiments aims at assessing each
feature independently as a simple ID signature. A particular
feature of a single subject is extracted from the probe set,
and matched against the corresponding gallery features of
all subjects, employing an appropriate metric (Bhattacharya
distance for histograms [6] and Euclidean distance for mean
values). This happens for all the probe subjects, resulting
in a N ×N distance matrix (N is the total number of sub-
jects). Ranking in ascending order the N distances for each
probe element allows one to compute the Cumulative Match
Characteristic (CMC) curve, i.e., the probability of finding
the correct match in the top n positions of the ranking (with
n ranging between 1 and N). The CMC curve is an common
performance measure for AA approaches [4]. In particular,
the value of the CMC curve at position 1 is the probabil-
ity that the probe ID signature of a subject is closer to the
gallery ID signature of the same subject than to any other
gallery ID signature; the value of the CMC curve at position
n is the probability of finding the correct match in the first
n ranked positions.

Given the CMC curve for each feature (obtained by aver-
aging on all the available trials), the normalized Area Under
Curve (nAUC) is calculated as a measure of accuracy. Fig-
ure 1 shows that the individual performance of each feature
is low (less than 10% at rank 1 of the CMC curve). In addi-
tion, the first conversational feature ranks seventh in terms
of nAUC, while the others rank 10th, 14th, 15th and 16th,
respectively.

The experiments above serve as basis for the Forward Fea-
ture Selection (FFS) strategy [10]. At the first iteration
the FFS retains the feature with the highest nAUC, at the
second one it selects the feature that, in combination with
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5  -- Exclamation marks   72.16
2  -- # emoticons    71.25
9  -- # three points    70.99
10  -- # uppercase letters   70.9
11  -- # upperc. let. / # words   67.4
4  -- # emoticons per chars.   67.19
12  -- Turn duration    66.01
7  -- # characters    65.42
8  -- Words length    65.38
13  -- # return chars   65.32
3  -- # emoticons per word  64.11
6  -- # question marks   61.94
1  -- # words     61.65
14  -- # chars per second  61.20
16  -- Mimicry degree   60.69
15  -- # words per second  60.19
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Figure 1: CMCs of the proposed features. The num-
bers on the right indicate the nAUC. Conversational
features are in bold (best viewed in colors).

the previous one, gives the highest nAUC, and so on un-
til all features have been processed. In our experiments,
combining features means to average their related distance
matrices, forming a composite one. The pool of selected fea-
tures is the one which gives the highest nAUC. Since FFS
is a greedy strategy, different runs (50) of the feature selec-
tion are used, selecting a partially different pool of 30 turns
each time for building the probe set. In this way, 50 differ-
ent ranked subsets of features are obtained. For distilling
a single subset, the Kuncheva stability index [9] is adopted,
which essentially keeps the most informative features (with
high ranking in the FFS) that occurred most times.

The FFS process results into 12 features, ranked according
to their contribution to the overall CMC curve. The set
includes features 5, 2, 9, 10, 12 (turn duration), 13 (#
“return” characters), 8, 14 (chars per second), 6, 7,
16 (mimicry degree), 15 (words per second). In bold,
we report the conversational features that appear to rank
higher than when used individually. This suggests that, even
if their individual nAUC was relatively low, they encode
information complementary with respect to the traditional
AA features.

The final CMC curve, obtained using the pool of selected
features, is reported in Figure 2, curve (a). In this case,
the rank 1 accuracy is 29.2%. As comparison, other CMC
curves are reported, considering (b) the whole pool of fea-
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# Turns 5 10 15 20 25 30
nAUC 68.6 76.6 80.6 85.0 88.4 89.5

rank1 acc. 7.1 14.0 15.1 21.9 30.6 29.2

Table 3: Relationship between performance and
number of turns used to extract the ID signatures.

tures (without feature selection); (c) the same as (b), but
adopting linear histograms instead of exponential ones; (d)
the selected features with exponential histograms, without
the conversational ones; (e) the conversational features alone
and (f) the selected features, calculating the mean statistics
over the whole 30 turns, as done usually in the literature
with the stylometric features.
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a) Selected features (OUR APP.)  89.52
b) All features       88.67
c) All features − linear hist.  87.94
d) Not Conversational    87.57
e) Only Conversational    72.30
f) Classical feature calculation  64.74

Figure 2: Comparison among different pool of fea-
tures.

Several facts can be inferred: our approach has the high-
est nAUC; feature selection improves the performance; ex-
ponential histograms work better than linear ones; conversa-
tional features increase the matching probability of around
10% in the first 10 ranks; conversational features alone give
higher performance of standard stylometric features, calcu-
lated over the whole set of turns, and not over each one of
them. The last experiment shows how the AA system be-
haves while diminishing the number of turns employed for
creating the probe and gallery signatures. The results (me-
diated over 50 runs) are shown in Table 3. Increasing the
number of turns increases the nAUC score, even if the the
increase appears to be smaller around 30 turns.

5. CONCLUSIONS
This paper proposes two main contributions to the prob-

lem of recognizing automatically the identity of chat par-
ticipants while respecting their privacy. The first is the in-
troduction of new features that account for turn-taking and
mirror the features typically applied in automatic under-
standing of spoken conversations. The second is the use of
turns as a basic analysis unit for the analysis of chat data and
identification of their participants. The results are promis-
ing and show that taking into account the conversational
nature of the texts typed during chat exchanges can improve
the performance of AA approaches. Future work will aim
not only at further exploiting such an aspect of chat con-
versations, but also at using more sophisticated statistical
models for identity recognition.
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