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ABSTRACT

Are we recognizable by our image preferences? This paper
answers affirmatively the question, presenting a soft biomet-
ric approach where the preferred images of an individual are
used as his personal signature in identification tasks. The
approach builds a multi-resolution latent space, formed by
multiple Counting Grids, where similar images are mapped
nearby. On this space, a set of preferred images of a user
produces an ensemble of intensity maps, highlighting in an
intuitive way his personal aesthetic preferences. These maps
are then used for learning a battery of discriminative classi-
fiers (one for each resolution), which characterizes the user
and serves to perform identification. Results are promis-
ing: on a dataset of 200 users, and 40K images, using 20
preferred images as biometric template gives 66% of proba-
bility of guessing the correct user. This makes the “personal
aesthetics” a very hot topic for soft biometrics, while its us-
age in standard biometric applications seems to be far from
being effective, as we show in a simple user study.

Categories and Subject Descriptors

K.6.5 [Computing Milieux]: Security and Protection—
authentication, unauthorized access; 1.5.4 [Computing me-
thodologies]: Pattern Recognition—pattern analysis

Keywords

Soft biometrics, computational aesthetics, Counting Grid

1. INTRODUCTION

Soft biometric traits are human characteristics that pro-
vide some information about the identity of an individual,
that differ from standard biometric patterns since they are
not intrusive and do not require explicit cooperation for their
extraction - they can be fully imperceptible [2].

Soft biometrics can be divided into physical/physyiological
(age, gender, ethnicity, height, EEG signals etc.) and behav-
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ioral biometrics, that is, encoding a characteristic linked to
the behavior of a person [9]. This last class can be fur-
ther partitioned into authorship-based (linked to style pe-
culiarities of the individual - how she/he writes a book),
motor skill-based (how a person performs a particular phys-
ical task), purely behavioral (how a person solves a mentally
demanding task) and HCI-based biometrics [24].

HCI-based biometrics are based on the idea that every
person has a unique way to interact with a personal com-
puter. For example, some methods investigated the possibil-
ity of identifying a person considering mouse or keystrokes
dynamics [17, 19]; some other approaches focused on how
people use Internet, like chatting [18] or browsing histo-
ries [14].

Very recently, a brand-new HCI-based biometric trait e-
merged, exploiting the “personal aesthetics” of people, that
is, those image preferences that distinguish people from each
other [9]. The approach assumes that, given a set of pre-
ferred images, it is possible to extract a set of features indi-
viduating discriminative visual patterns; these patterns can
be used as biometric template, and employed for identifica-
tion.

The motivations of why focusing on pictures to encode
the identity of an individual are many: from one side, tak-
ing pictures is the action most commonly performed with
mobile phones (82% of the users from USA), followed by
exchanging text messages (80% of the users) and accessing
the Internet (56% of the users) [4]. Furthermore, 56% of the
American Internet users either post online original pictures
and videos (46% of the total Internet users) or share and
redistribute similar material posted by others (41% of the
total Internet users). In this scenario, the use of the liking
mechanisms, that is, online actions allowing users to publicly
express preference for a given picture, has become pervasive
and massive, becoming a social mass phenomenon [20]. On
the other side, psychology and neuroscience have investi-
gated the role of personal characteristics on aesthetic pref-
erences [8], finding that there are remarkable ties between
aesthetic appreciation and personality [6]. This latter, be-
ing a stable characteristic of humans, ensures that personal
aesthetics are somewhat permanent, a desirable property for
soft biometric traits [2].

In this paper, this novel promising direction is followed,
proposing a generative embedding approach for managing
the personal aesthetics soft biometrics. The general assump-
tions of the approach are that, for a given set of users, we
have a pool of images preferred by each one of them; we



also suppose that these images have been chosen from a po-
tentially infinite set of images and that the amount of liked
images shared by more than a user is minimal. These as-
sumptions are crucial for the effectiveness of the approach,
but reasonable, as we will see in the following.

The approach consists in an initialization stage, followed
by the enrollment stage and finally the identification stage.
In the initialization stage, a low-dimensional multi-resolution
latent space is learned, consisting of a set of Counting Grids
(CGs) [16]: each CG is a 2D space (a flattened torus), where
visually similar pictures are mapped nearby; each CG is
characterized by a particular resolution, that in rough words
models how much visually similar should be the images in
order to be close on the grid. Having multiple resolutions
means to evaluate differently grained similarity relations a-
mong images.

In the enrollment stage, a collection of preferred pictures
of an individual in the gallery set is mapped into the multi-
resolution CG, resulting in an ensemble of embedding maps,
one for each resolution. These embedding maps are then fed
into discriminative classifiers: in particular, for each resolu-
tion grain (that is, for each embedding map) a classifier is
instantiated, learned in one-VS-all modality.

In the identification stage, test images (one, or more than
one) are projected into the CGs, forming another set of em-
bedding maps which are then classified, producing a joint
prediction; this last is used to provide the identity of the
user. Please note that the approach allows to use a varying
number of images both for the enrollment and the identifi-
cation stage, providing a flexible soft-biometrics mechanism.

The proposed approach is very expressive: it allows to un-
derstand “visually” the kind of images liked by a user, and
how such images distinguish him from other persons, in a
very compact and economic way, using directly the CGs.
This overcomes one of the limitations of [9], where the im-
ages are treated directly in the original feature space, and
analyzed through LASSO regression as classifier; in the case
of high number of features, this would lead to overfitting
issues. As second, methodological contribution, an intrinsic
limitation of Counting Grids has been circumvented, that
is, their model selection (how to select a particular resolu-
tion [16]). This problem has been faced by considering var-
ious CG resolutions, capturing the diverse mappings they
generate; this results in a multi-resolution image analysis,
which has proven to be better than focusing on a single
resolution. More importantly, the CG modeling allows to
get impressive identification performances, definitely beat-
ing the state of the art. Comparative tests have been per-
formed on the only real dataset currently available in the
literature [9], composed by 40000 images which belong to
200 users chosen at random from the Flickr community. For
each user, 200 preferred images (his “favorites”) have been
retained.

As identification performance, using 20 preferred test im-
ages as biometric signature gives 66% of probability of guess-
ing the correct user (state of the art was 25%), promoting
personal aesthetics as a promising soft biometric modality,
with performances quite close to what one can expect from
a classic biometric signature. Anyway, the assumption of
having an infinite number of images that the user can select
from (that is, the entire Flickr repository) is an essential
hypothesis for making our approach effective; in order to
demonstrate this fact, we set up a user study which ana-

lyzes a random subset of users; each user is asked to select
a number of preferred images from a finite pool of available
test images, as it could happen in a standard biometric ap-
proach where the user has to select a signature from a finite
number of alternatives (a password). In this case, the avail-
able aesthetical variability diminishes dramatically, and as
a consequence, identification performances drop.
Summarizing, the contributions of this work are

e a novel approach for personal aesthetics, which is a
very recent soft biometric trait;

e anovel methodology for Counting Grids modeling, solv-
ing the problem of the model selection;

e new state of the art and impressive results, doubling
in some cases the state of the art performances;

e a critical study of the limitations of the personal aes-
thetics.

The rest of the paper is organized as follows: in Sec. 2 a
summarization of the Counting Grid generative model is re-
ported; in Sec. 3 the proposed approach is detailed, explain-
ing how it can be customized for the identification tasks.
The approach is thoroughly tested in Sec. 4, and, finally,
conclusions are given and future perspectives are envisaged
in Sec. 5.

2. MATHEMATICAL BACKGROUND: THE
COUNTING GRID MODEL

The Counting Grid (CQG) is a recent generative model [16]
aimed at analyzing image collections. It assumes that im-
ages are i.i.d. random variables represented as histograms
(or bags-of-features) {c.}.=1,...,z, where each c. is a count-
ing variable which enumerates the occurrences of the z—th
feature.

In its two-dimensional version', a CG = is a 2D finite
discrete grid (a flattened torus), spatially indexed by i =
(z,y) € [1...E]x[1l...E], and containing normalized counts
of features {mi .}, indexed by z = 1,...,Z. Therefore,
>, m,. = 1for every i on the grid. Under this model, an im-
age (i.e. its BoF {c.}) is generated by selecting a certain lo-
cation k, calculating the distribution hx . = é Ziewk T,z
by averaging all the words counts within the window Wy (of
dimensions S x S and such that k is its upper left corner)
and then drawing features counts from this distribution. In
practice, a small window is located in the grid, averaging the
feature counts within it to obtain a local probability mass
function over the features, and then generating from it an
appropriate number of features in the bag {c.}. In other
words, unlike a straightforward embedding (e.g. PCA) that
links an image with a point location, the CG forces the image
to link with a small window of locations. Simply speaking,
a CG could be think as a mixture model, where the compo-
nents are overlapping windows indexed by k.

This said, it appears clear that the position of the window
k in the grid is a latent variable; given k, the likelihood of

{c.} is
pletio = [Ty = G [T (X me) ™ )
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IN-dimensional in general, here we focus on 2 dimensions.



Given that the size F x E of a Counting Grid is usually
small compared to the number of images, this also forces
windows linked to different images to overlap, and to co-exist
by finding a shared compromise in the feature counts located
in their intersection. The overall effect of these constraints is
to produce locally smooth transitions between strongly dif-
ferent feature counts by gradually phasing features in/out in
the intermediate locations. In practice, local neighborhoods
in the grid represent similar concepts and images mapped in
close locations are somehow similar.

To learn a Counting Grid, the likelihood over all training
images T" needs to be maximized, and this can be written as

p({{cz},kt}L)aﬁﬁ( DR R

t=1z2=1 iEWkt

The sum over k makes it difficult to perform assignment to
the latent variables (i.e., the components of the mixture) and
S0 to estimate the model parameters; this is the same that
happen with mixtures of Gaussians, hidden Markov models
etc.; therefore, it is necessary to employ an EM algorithm.
The procedure is a bit complicated and involves different
variational distributions; for this study it is only necessary
to quote the posterior distribution, calculated in the E step,

p(k'|[{ct}) = qic < exp Y ct - log huc, - (3)

z
which is a probabilistic mapping of the ¢-th bag to the
grid windows k. This mapping is usually peaky, i.e. each
image tends to map to a few nearby locations in the grid.
For details on the learning algorithm and on its efficiency,
the reader can refer to the original paper [16].

3. THE PROPOSED APPROACH

The proposed three-stage approach is sketched in Fig. 1.
The initialization step is applied on a training set made by
generic images: it consists on creating a bag of features for
each image, and learning the multiscale Counting Grid. In
the enrollment stage, the preferred images of each user x,,
u=1,...,U of the gallery set are mapped on the CG latent
space, and the resulting maps (one for each CG scale) are fed
into a discriminative classifier. In the identification stage,
the test images of a probe subject are transformed into bags
of features, and embedded into the CGs; the resulting maps
are given as input to all the U gallery classifiers, producing
U identification scores. These scores are used to decide the
best gallery user.

3.1 [Initialization Stage: Creating the Bags of
Features

For the sake of comparison, in this work the dataset used
in [9] has been considered; it is composed by 40000 images
belonging to 200 users, chosen at random from the Flickr
website. For each user, the 200 last “favored” pictures have
been retained (the act of favoring an image consists in click-
ing on a specific icon close to the liked image in the main
Flickr interface). Repeated images across users are less than
the 0.05%.

From each image x;, the same set of cues of [9] has been
extracted, composed by 19 types of features resulting in
a 111-dimensional real vector (see Table 1); the goal is to
manage highly heterogeneous image features, letting them
smoothly interact in the CG.
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Figure 1: The proposed approach, composed
by three stages: initialization, where the multi-
resolution Counting Grid is learnt; enrollment,
where the classifiers for each user are trained, and
identification stages, where unknown personal aes-
thetics are matched with the gallery.

The features are organized in two families: on one side, are

reported the cues that focus on aesthetic aspects [3, 11]: in
practice, they encode low-level global image properties. On
the other side, there are the content-based features, which
individuate local image patterns representing semantic enti-
ties (cars, chairs and the like); to this end, robust probabilis-
tic object detectors have been employed [5] (for a complete
list of all the detectable objects, see Table. 1); other than
the number of objects in an image, the object area (that is,
the bounding box of the detected object) is also retained. In
the case of multiple instances of the same object, the average
area is considered. Faces have been extracted adopting the
standard Viola-Jones face detection algorithm [23]. Finally,
the GIST descriptor [15] for scene categorization has been
considered.
It is worth noting that each feature extracted in the proposed
approach indicates the level of presence of a particular cue,
i.e. an intensity count. This is needed for the modeling
with the Counting Grid. For this reason, features working
on angular measures (as those modeling the Hue channel in
the HSV color space) have been discarded. For more de-
tails on the features, see [9]. Since the range values are very
heterogeneous, each feature is normalized across all training
images to have zero mean and unit standard deviation. The
same normalization is then applied to the features extracted
from test data.

3.2 Initialization Stage: Multi-resolution Count-

ing Grid Training
Given the bags of features, the extent E of the classical
Counting Grid and its window size S, a multi-resolution CG



Category | Name L Short Description

Use of light 1 Average pixel intensity of V channel [3]

HSV statistics 3 Mean of S channel and standard deviation of S, V channels [11]

Emotion-based 3 Amount of Pleasure, Arousal, Dominance [11, 22]

Circular Variance 1 Circular variance of the H channel in the IHLS color space [12]

Colorfulness 1 Colorfulness measure based on Earth Mover’s Distance (EMD) [3, 11]

Color Name 11 Amount of Black, Blue, Brown, Green, Gray, Orange, Pink, Purple, Red, White, Yellow [11]

Entropy 1 Image entropy [10]
P Wavelet textures 12 | Level of spatial graininess measured with a three-level (L1,L2,L3) Daubechies wavelet transform on the HSV channels [3]

erceptual . . . . .

Tamura 3 Amount of Coarseness, Contrast, Directionality [21]

GLCM-features 12 | Amount of Contrast, Correlation, Energy, Homogeneity for each HSV channel [11]

Edges 1 Total number of edge points, extracted with Canny [10]

Level of detail 1 Number of regions (after mean shift segmentation) [1, 7]

Regions 1 Average size of the regions (after mean shift segmentation) [1, 7]

Low depth of field (DOF) 3 Amount of focus sharpness in the inner part of the image w.r.t. the overall focus [3, 11]

Rule of thirds 2 Mean of S,V channels in the inner rectangle of the image [3, 11]

Image parameters 1 Aspect ratio of the image [3, 10]

Objects detectors [5]: in particular, here are the objects for which detectors are available: people, plane, bike, bird, boat,

Objects 28 | bottle, bus, car, cat, dog, table, horse, motorbike, chair. In all the cases we kept the number of instances and their
Content average bounding box size

Faces 2 Number and size of faces after Viola-Jones face detection algorithm [23]

GIST descriptors 24 | Level of openness, ruggedness, roughness and expansion for scene recognition [15].

Table 1: Summary of all features. The column ‘L’ indicates the feature vector length for each type of feature.

is learned. In practice this amounts to learn R = E — S
Counting Grids, starting at resolution r = 1 (the lowest
resolution level) with the window of size E — 1, decreasing
the window size of one pixel at each time, until the mini-
mum size S (the highest resolution level r = R) is reached.
At each resolution level r (except the first one), the prior
parametrization for 7(") is the CG learnt at the previous
step, i.e., 7"~V . At the first resolution level, the initializa-
tion is random. In simple words, the size of the window S
determines how smoothed is the latent space where the im-
ages coexist: the larger is the window, the smoother is the
mapping, and the larger is the neighborhood where similar
images could be mapped. In practice, operating with a large
window size corresponds to heavily smooth the images, cap-
turing solely their main characteristics, while at the smaller
scale, all the details of an image contribute to determine
a precise location in the grid. Therefore, having a set of
multi-resolution CGs corresponds to analyze the images at
a different level of detail, from a coarse to a fine grain.

For the sake of visualization, the Counting Grids can not
be directly visualized (each location contains a distribution
of features), but it is possible to create an image mosaic
using those images {c.} which give the highest posterior at
each location k, i.e., p(k*|{cL}), at a given resolution level
r. In Fig. 2, on the left, the Counting Grid with E = 45 at
resolution r = R (S = 10, maximum resolution) is reported.
As visible, close images are visually similar, and semantic
topics do emerge?.

3.3 Enrollment Stage

Once the multi-resolution Counting Grid is learnt, the im-
ages of each gallery user can be mapped within it, obtaining
R maps, one for each resolution. The generative embedding
occurs by calculating a posterior probability at each loca-
tion k; once we have fixed a user u and a resolution r the

posterior is

¥ = 37 p ety 7 ) (4)
teTy,

where T, identifies the set of images of the user u: T,, can
have different cardinalities, depending on how many gallery
images are available for user u. Roughly speaking, the main
idea is to sum all the mappings of the images belonging to
a given user, thus highlighting the zones of the latent space

2A larger figure is reported in the additional material, also
depicting different CGs at different resolution
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Figure 3: Embedding maps for user 38 of Fig. 2.
Starting from the lowest resolution (r=1, S=44) and
going towards higher resolutions, the maps show re-
fined blobs and areas, identifying more precisely se-
mantic areas, easily interpretable, on the grid.

where the images have been located. The presence of Count-
ing Grids at multiple scale allows to map the preferences of
the user from a very rough resolution (on the Counting Grids
obtained with large windows) until the finest resolution (the
Counting Grid being learned with a small sized window),
where the map is usually peaked.

A graphical explanation of the mapping process is shown
in Fig. 2 and Fig. 3; in Fig. 2, together with the collage of
the CG, on the left are reported the embedding maps of a
single resolution level (the maximum, i.e., r=R) for three
subjects, together with some random images preferred by
them. One can notice two facts: 1) given a user, looking at
his map and at the CG collage as reference, does allow to
easily understand which kind of images are his preferred; 2)
comparing the maps of different users, one can understand
possible similarities: first two users from the top appear to
share much the same preferences, while the third one has
radically diverse tastes. This fact is confirmed by checking
the random pictures of the users, on the right3.

In Fig. 3 are reported the R mappings for the user 38 of
Fig. 2. Starting from very blurred and unstructured maps

3The complete set of images of these users are reported in
the additional material.



Figure 2: Counting grid at resolution » = R: on the left, the grid is visualized as a collage of images that, at
a given location k, exhibit the highest posterior probability p(k‘|{c.}). On the right, the embedding maps of
a single resolution level (r=R) are reported for three subjects, together with some random images preferred

by them.

corresponding to the lower resolutions, going toward higher
resolution maps, blobs and distinct areas start to emerge,
refining the “semantic” knowledge of the preferences a user
exhibits.

After the mapping step, the maps {'yq(f)}rﬂ ,,,,,
used as ID template for user u; to this sake, a battery of
discriminative classifiers {)\Ef)}r:lw,R are learnt (one for
each resolution). In this study, Support Vector Machines
with radial basis functions have been employed: in particu-
lar, SVMs take as positive samples the maps {'71([')}T7 while
as negative samples the maps of all the other gallery users.
This step concludes the enrollment stage.

3.4 Identification Stage

In the identification stage, all the probe images of a user
v are first encoded as bags of features. Subsequently, they
are mapped on the multi-resolution CG, and the resulting
maps {’yff")}r:l ,,,,, r are used as input of the SVMs related
to the gallery user u; they classify the maps producing R
scores {c&%},«:l,m,R that, once mediated, provide a single
classification score cy,». In other words, each user produces
R probe maps; each of them is given as test input to the
correspondent SVM of the gallery user, providing a confi-
dence score (the distance from the separating hyperplane).
Averaging these scores over all the resolutions gives the fi-
nal confidence score. In the identification case, a confidence
score is associated to each gallery user; this allows to rank
the scores, keeping the highest ranked user as the best match
with the probe.

4. EXPERIMENTAL EVALUATION

The general aim of the experiments is to explore to which
extent the personal aesthetics signature is effective in a soft-
biometrics context; to this aim, and for the sake of compa-
rability, the same experiments carried out in [9] have been
taken into account, for what concerns the identification task*.
In addition, several experiments have been performed, to
investigate the peculiarities of our proposal. In all the ex-
periments, the Flickr dataset has been divided into a train-
ing and testing partitions, each composed by 100 preferred
images. The training partition has been used to learn the
Counting Grid, to produce the embedding maps of the gallery
users and to learn the gallery SVMs. The testing partition
has been used to select the probe images, mapping them
into the CG and producing the probe embedding maps.

The first experimental scenario considers an identification
task: here the soft-biometric system wants to recognize the
user of a Flickr account, given a pool of unknown preferred
images - all liked by the same individual - against a set
of gallery users. The second set of experiments is aimed
to individuate the limitations of personal aesthetics, and in
particular what happens when the users are forced to select
from a relatively small number of test images and not from
a potentially infinite set as the Flickr repository could be
considered.

In both the cases, the parametrization of the multi-resolu-
tion Counting Grid is the same: the CG size has been fixed
at E = 45 pixels, while the (smallest) window size has been
set to S = 10; this generates a set of 35 maps per user. The
extraction of the image features takes 60 minutes per user

4The verification experiments in [9] have also been taken into
account, not reported here for the lack of space, essentially
confirming the superiority of our approach.



(100 images), on a not optimized MATLAB code run on a
3.4 GHz processor with 16 Giga of RAM (the long time is
due to the object detectors). The learning of the Counting
Grid at a single resolution takes in total 2 minutes, while the
mapping + SVM training operation requires 3 seconds for
N = 100 images of the same user, on the same computer.
Regarding the variability of the results in relation to the
E and S values, the proposed approach maintains similar
performance when the ratio between E and S (also dubbed
“capacity” in [16]) is bounded in the interval [3,5]. Even if
E and S respect the capacity ratio, performances seem to
decrease when E < 10 and E > 70.

4.1 Identification Results

The results of the identification tasks have been carried
out following the protocol of [9], for a fair comparison; cross-
validation has been performed using 2-fold scheme, repeat-
ing each experiment 20 times and shuffling the gallery/probe
partition of each user. We also crossvalidated the parameters
C and g of the SVM classifier obtaining the best configura-
tion with C' = 1000 and g = 0.001.

Given a probe signature built from an image or a set of
images, the goal is to guess the gallery user who tagged
them. To do that, the SVM classification (averaged) confi-
dence score produced by each of the gallery classifiers has
been analyzed. Hopefully, the gallery user with highest score
is the one related to the user who originally selected as fa-
vorite the photo or the set of photos. To evaluate the recog-
nition capability the Cumulative Matching Characteristic
(CMC) curve has been computed [13]; the CMC is a widely-
known performance measure in the field of person recogni-
tion/identification. Given a probe signature of a user and
the matching confidence score, the curves tells the rate at
which the correct user is found within the first k& matches,
with all possible k spanned on the x-axis. Fig. 4 shows vari-
ous CMC curves for the dataset, where the curves have been
obtained by averaging the CMC curves of the 20 different
experiments with different gallery/probe splits. In particu-
lar, four different CMCs are reported, varying the number of
test images used to compose the probe signature of a user,
while keeping the number of images used to build the gallery
signature fixed to 100. In practice, it is assumed to have 1,
5, 20 and 100 images which have been faved by the same
unknown user.

Table 2 reports the CMC mean values (plus standard de-
viations) for the different ranks, for a quantitative analysis.
We also reported the normalized area under the CMC curve
(nAUC) as global performance measure.

As visible, the proposed approach definitely overcomes the
performance of [9], at every signature cardinality, at each
rank. As expected, having more images as test does improve
systematically the identification performances. In particular
one can note that, having 20 images as test signature allows
to reach an average probability of guessing the correct user
at the first rank of 0.66, which is definitely above the chance.
The probability raises at 0.88 if we check the event of having
the correct user within the first 5 ranked users.

Another experiment consisted in fixing the number of test
images to 100 and varying the cardinality of the gallery sig-
nature, that is, the number of images used to compose the
embedded maps fed into the SVM classifiers.

The curves are reported in Fig. 5, and the diverse rank
values are listed in Table. 3.
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curve for our approach, while varying the number
of test images used to compose the probe signature.
The normalized area under the curve (nAUC) is also
reported.

Tie | Met. rank 1 rank 5 rank 20 rank 50 nAUC
1 [9] 0.06 0.18 0.40 0.82 0.76
our 0.22+0.01 0.44+0.04 0.70+0.04 0.91+0.02 0.92+0.007
5 [9] 0.14 0.39 0.68 0.96 0.89
i our 0.48+0.02 0.75+0.02 0.941+0.01 0.99+<0.01 | 0.98+0.002
20 [9] 0.25 0.62 0.88 0.99 0.96
our 0.66+0.02 0.88+0.01 0.98+<0.01 | 1.00£<0.01 | 0.99+0.001
100 [9] 0.35 0.79 0.97 0.99 0.98
our | 0.73£<0.01 | 0.92+<0.01 | 0.984+<0.01 | 1.00£<0.01 | 0.99+0.000

Table 2: Recognition results, varying the number T},
of images that compose the probe signatures (and
fixing the number of gallery images Ti to 100 for
each user). The rank numbers are the z-axis val-
ues of the CMC curve we focus on. In practice,
the reported values represent the average probabil-
ity of having the correct match within the first 1-
5-20-50 signatures, considering different number of
probe images.
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Figure 5: Cumulative Matching Characteristic

curve for our approach, while varying the number

of train images used to compose the gallery signa-

ture. The normalized area under the curve (nAUC)

is also reported.

Even in this case the proposed approach sets the new
best performance, once again exhibiting higher performance
when increasing the number of images adopted to build the
gallery signature.



Ty | Met. rank 1 rank 5 rank 20 rank 50 nAUC
- our 0.17+0.04 0.57+0.02 0.82+0.02 0.95:+0.01 0.94+0.003
° [9] 0.07 0.23 0.49 0.88 0.81
10 | ow 0.37+0.03 0.78+0.02 0.95+0.01 | 0.99+<0.01 | 0.98+0.002
9] 0.11 0.32 0.62 0.94 0.87
20 our 0.64+0.02 0.89+0.02 0.98+0.01 1.00£<0.01 | 0.9940.002
9] 0.15 0.44 0.74 0.97 0.91
50 our 0.70+0.02 0.99+<0.01 | 1.00+£<0.01 | 0.99+0.001 | 0.92+<0.01
) 9] 0.22 0.57 0.83 0.99 0.94
100 | v 0.73+£<0.01 | 0.92+<0.01 | 0.98+<0.01 | 1.00+£<0.01 | 0.99+<0.01
9] 0.35 0.79 0.97 0.99 0.98

Table 3: Recognition results, varying the number 7T},
of images that compose the gallery signatures (and
fixing the number of probe images T;. to 100 for each
user). The rank numbers are the z-axis values of the
CMC curve we focus on.
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Figure 6: Identification scores while varying the
number of resolution employed.

To explore the identification performance while diminish-
ing the number of resolutions employed to learn the CG rep-
resentation, another test has been performed. In this case 1,
2, 5, 10, 20 and 35 different resolutions have been considered
(keep in mind that 35 is the number of resolutions used so
far for producing the above results). In the case of a single
resolution, all the S windows size between 10 and F—1 = 44
have been independently evaluated, calculating the recogni-
tion performance while using 100 images of gallery and 100
of probe. The resulting identification scores have been aver-
aged, providing also the standard deviation values. For eval-
uating higher numbers of resolutions, different windows size
have been sampled without replacement (depending on the
cardinality being evaluated) and ranked in descending order.
After that, the window with the largest size has been learned
with random initialization; the obtained CG has been used
as prior for the second ranked one and so on. The exper-
iments have been repeated 35 times, reporting the average
recognition score. Results are portrayed in Fig. 6.

As expected, increasing the number of resolution levels
does augment the identification capabilities.

4.2 Limitations of our approach

So far, all the works on personal aesthetics did the gen-
eral assumption that all the images selected from the users,
both of training and testing, were not overlapping, that is,
no common preferred images are shared among users. In the
dataset used so far this hypothesis holds, being the number
of repeated images less than the 0.2%. But this is not al-
ways the case, especially when a much larger number of users
is occurring, or when the images to select come from a re-

stricted number of available pictures. In this last experiment
we take into account this situation with a user study: as first
operation we build a “reduced” test dataset, by sampling one
image from each pool of the 200 originally liked images of all
the 200 users, clearly avoiding repeated images. These 200
images have been organized on a web interface, where the
users can select them. Then, 16 users of the original dataset
have been asked to select from this interface 5, 10, 20 im-
ages. After that, the selected images have been used as a test
signature for our approach, and compared with the gallery
signatures (which for simplicity have been kept equal to the
experiments of the previous section), generating three differ-
ent CMC curves. As comparison, we use the test signatures
coming from the original test images of the dataset, and not
from the reduced set. The results are shown in Fig.7, which
show that the images coming from the reduced dataset have
obviously less discriminative power than the ones coming
from the original one: this is because of the less aesthetical
variability contained within, and to the possible number of
images which have been selected by more than one user. In
this sense, it is interesting to note that, while increasing the
number of images used for building the signature from 5 to
20, the performance of the reduced dataset slightly diminish,
while in the original case they obviously augment.

5. CONCLUSIONS

So far, aesthetical preferences have been considered in
computer science as underlying a common sense of beauty;
in fact, the literature focused on the design of methods aimed
at evaluating a general “computational aesthetics” of pic-
tures. With the approach of [9], personal aesthetic prefer-
ences started to emerge as peculiar features capable of char-
acterizing the identity of a person. In this paper, a second
approach in this brand new field is proposed, which consists
in a generative embedding strategy: a generative step (the
mapping on the Counting Grids) is followed by a discrim-
inative step (the SVM training). This way, exploiting the
advantages of hybrid generative/discriminative approaches,
the compact and interpretable CG representation becomes
a feature for a discriminative classifier, resulting in the new
state of the art on a dataset of 200 users and 40K images.
This papers presents also one of the main limitation of our
approach, that is, the images selected by the user have to
come from a large (potentially infinite) set of images, with
no images shared among users; when this assumption holds
no more, we have two problems emerging: the first is that
the variability of the test signatures irremediably diminishes,
as the number of images to select from is smaller, and the
second is that the number of images which can be chosen
by more than a user is no more negligible. This suggests
that, for a valid biometric application (and not solely a soft
biometric one), different (and more structured) multimodal
interaction paradigms would be necessary.
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