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Abstract—This paper builds upon the belief that every human
being has a built-in image aesthetic evaluation system. This sort of
“personal aesthetics” mostly follows certain aesthetic rules widely
studied in image aesthetics (e.g., rules of thirds, colorfulness,
etc.) though it likely contains some innate, unique preferences.
This paper is a proof of concept of this intuition, presenting
personal aesthetics as a novel behavioral biometrical trait. In
our scenario, personal aesthetics activate when an individual is
presented with a set of photos he may like or dislike: the goal is
to distill and encode the uniqueness of his visual preferences
into a compact template. To this aim, we extract a pool of
low- and high-level state-of-the-art image features from a set
of Flickr images preferred by a user, feeding them successively
into a LASSO regressor. LASSO highlights the most discriminant
cues for the individual, allowing authentication and recognition
tasks. The results are surprising: given only 1 image as test, we
can match the user identity against a gallery of 200 individuals
definitely much better than chance; using 20 images (all preferred
by a single user) as a biometrical trait, we reach an AUC of
96%, considering the Cumulative Matching Characteristic curve.
Extensive experiments also support the interpretability of our
approach, effectively modelling what is the “what we like” which
distinguishes us from the others.

Index Terms—personal aesthetics, image preferences, behav-
ioral biometrics, computational aesthetics

I. INTRODUCTION

In the last two decades, the study and the development
of biometric systems have become of paramount importance,
from both a scientific and a practical point of view [1], [2].
Several biometrical traits have been designed, each analyzed
from different perspectives like accuracy, efficiency, usability,
acceptability, etc. From a very general point of view, they can
be divided in two main classes:
• physical / physiological biometrical traits, encoding a

physical characteristic of a person: the face, the finger-
print, the iris [3], [4], [5] – to cite the most striking
examples – or even EEG signals, footprints, ears, dental
configurations, and many others [6], [7], [8].

• behavioral biometrical traits: more than a physical fea-
ture, such traits encode a characteristic linked to the
behavior of a person [9], like the gait or the signature
[10], [11], [12], [13].
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Among the behavioral approaches, some – the so-called HCI-
based behavioral biometrics [9] – are based on the idea that
every person has a unique way to interact with a personal com-
puter: for example some methods successfully investigated the
possibility of characterizing a person on the basis of keystrokes
or mouse dynamics [14], [15]. In the same context, very
recently some other approaches investigated the exploitation of
Internet-based biometrical traits, like browsing histories [16]
or chatting [17].

This paper makes a further step along this direction, and
proposes a novel biometrical trait which exploits the “personal
aesthetics” traits of people, i.e. those visual preferences that
distinguish people from each other. Actually, it is known
that people often get enjoyment from observing images and
express preferences for some pictures over others. There is
no scientifically comprehensive theory that explains what
psychologically defines such preferences [18], even if some
guidelines have been produced which suggest principles of
general gratification [19], [20], [21], [22], [23], [24] – some
of them have been modeled computationally in the field of
Computational Media Aesthetics (CMA) [25]. For example,
considering colors, a study reported in [24] showed that human
subjects prefer blue and dislike yellow, unveiling intriguing
continuity between animal and human color aesthetics. Re-
garding shape, the most important principle discussed in the
literature is that of the “Golden Ratio”: the idea is that a
rectangle whose ratio between height and width is the same
as the ratio of their sum to their maximum is more attractive
than other rectangles. Recent studies limited the strength of
this belief [26].

In this context, many CMA applications have been deve-
loped: from aesthetic photo ranking [27], [28] and preference-
aware view recommendation systems [29], to picture quality
analysis [30], [31]. Nevertheless, these technologies seem to
forget the essential role that factors internal to the observer
may have on preference, summarized by the old adage “beauty
is in the eye of the beholder”. Recent studies have shown
that preference formation is a result of the interplay between
subjective novelty, e.g. how new a visual stimulus seems to
an observer, and how well the observer is able to extract the
sense of a stimulus and to relate it to previous knowledge,
defined as interpretability [32].

This paper is aimed at investigating how identifiable these
aesthetics traits are, namely if it is possible to model the visual
preferences of an individual in a unique way. To do that,
a biometric recognition/authentication system is built: in the
enrollment phase, the “preference model” of a user is learnt
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Fig. 1. Some samples of favorite images taken at random from a Flickr user.

from a set of preferred images; in the verification/recognition
phase, such model is tested with an unseen set of favorites
preferred by a probe subject. More in detail, we take a
crowdsearch approach [33] and we focus on Flickr1, a popular
website where every user can select his preferred photos, by
tagging them as “favorites”. This creates, for every user, a
set of favorite photos, which is often very heterogeneous and
whose modeling/recognition goes beyond standard computer
vision tasks such as object/scene recognition (see Fig. 1
for an example). In order to infer the personal aesthetics
trait of a given subject, we analyze his “favorites set”: we
characterize each image with different features, ranging from
low-level color/edge statistics up to more high-level and se-
mantic descriptors such as object detectors and overall scene
statistics. LASSO regression is then exploited to learn the most
discriminative aesthetic attributes, i.e., the aspects a user likes
that distinguish her/him from the rest of the community: such
aspects represent the template. In the experiments, involving
both verification and identification, we will show that personal
tastes act like a blueprint for a user, allowing to recognize him
against a set of 200 users with high accuracy; in particular,
given just one image from an unknown user, his identity
is recognized better than with a random classifier, and this
dramatically raises when considering a higher number of
images.

The rest of the paper is organized as follows: the approach
is detailed in Sec. II, focusing both on the employed features
and on the learning strategy. Experiments on recognition
and authentication are reported in Sec. III, together with an
explorative analysis on how the features build the personal
aesthetics. The paper ends in Sec. IV with some remarks and
future perspectives on the usage of personal aesthetics traits
for biometrics. Please note that this work extends substantially
[34], adopting a different pool of image features and customiz-
ing the framework for biometrics purposes.

1http://www.flickr.com/

II. THE PROPOSED APPROACH

This section describes the main ingredients of our approach.
In particular we will first describe how features are extracted
from the images; then, the learning of the user specific
preference model is detailed. Finally, the matching score
computation is determined.

A. Feature extraction

We adopted a wide, though not exhaustive, spectrum of
features, here grouped into two families (see Table I). On
one side, we considered the cues that focus on aesthetic
aspects [28], [35], which we will refer to in the remainder
as perceptual features: the reason is that the Flickr corpus
is composed by pictures posted as “favorite”, i.e. likely to
represent the aesthetic and visual preferences of the users
under examination. On the other side, we focus on the content
of the images; to this end, we employed robust probabilistic
object detectors [36] (for a complete list of all detectable
objects see [36]); we also retained the average object area (the
algorithm gives also the bounding box of the detected objects).
In addition, we focused on the faces, adopting the standard
Viola-Jones face detection algorithm [37] implemented in
the OpenCV library. Finally, we adopted the GIST scene
descriptors [38], which amounts to applying a set of oriented
band-pass filters.

In the following, a short description is given for all the
employed features; it is worth noting that each feature
extracted in the proposed approach indicates the level of
presence of a particular cue, i.e. an intensity count. This is
needed for the adopted learning and matching framework:
therefore, some of the standard features have been ignored,
since they model categorical data, or codify measures which
depend on angular quantities.

• Use of light A fundamental property for image
aesthetics: underexposed or overexposed pictures are
usually considered bad. In the HSV color space, we
measured the light as the average intensity of the V
channel, as in [28].

• HSV statistics We collected a set of features considering
some simple statistical quantities over the HSV channels,
namely the mean of the S channel and the standard
deviation of S and V channels [35].

• Emotion based Saturation and Brightness can have
direct influence on pleasure, arousal, and dominance,
(which are the three axes of the emotion space [28],
[35]), and they have been computed according to the
equations:
Pleasure = 0.69V + 0.22S
Arousal = −0.31V + 0.60S
Dominance = 0.76V + 0.32S
V and S represent the matrices of the respective
channels, multiplied by the coefficients reported above
and then mediated over the pixels to get a single value
per channel per image.

http://www.flickr.com/
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Category Name L Short Description

Perceptual

Use of light 1 Average pixel intensity of V channel [28]
HSV statistics 3 Mean of S channel and standard deviation of S, V channels [35]
Emotion-based 3 Amount of Pleasure, Arousal, Dominance [35], [39]
Circular Variance 1 Circular variance of the H channel in the IHLS color space [40]
Colorfulness 1 Colorfulness measure based on Earth Mover’s Distance (EMD) [28], [35]
Color Name 11 Amount of Black, Blue, Brown, Green, Gray, Orange, Pink, Purple, Red, White, Yellow [35]
Entropy 1 Image entropy [34]
Wavelet textures 12 Level of spatial graininess measured with a three-level (L1,L2,L3) Daubechies wavelet transform on the HSV channels [28]
Tamura 3 Amount of Coarseness, Contrast, Directionality [41]
GLCM-features 12 Amount of Contrast, Correlation, Energy, Homogeneity for each HSV channel [35]
Edges 1 Total number of edge points, extracted with Canny [34]
Level of detail 1 Number of regions (after mean shift segmentation) [42], [43]
Regions 1 Average size of the regions (after mean shift segmentation) [42], [43]
Low depth of field (DOF) 3 Amount of focus sharpness in the inner part of the image w.r.t. the overall focus [28], [35]
Rule of thirds 2 Mean of S,V channels in the inner rectangle of the image [28], [35]
Image parameters 1 Aspect ratio of the image [28], [34]

Content
Objects 28 Objects detectors [36]: we kept the number of instances and their average bounding box size
Faces 2 Number and size of faces after Viola-Jones face detection algorithm [37]
GIST descriptors 24 Level of openness, ruggedness, roughness and expansion for scene recognition [38].

TABLE I
SUMMARY OF ALL FEATURES. THE COLUMN ‘L’ INDICATES THE FEATURE VECTOR LENGTH FOR EACH TYPE OF FEATURE.

• Hue Circular Variance From the hue channel in the
IHLS color space (see [40] for a detailed explanation),
we extracted the circular variance:

A =

N∑
i=1

cosHi, B =

N∑
i=1

sinHi

R = 1− 1

N

√
A2 +B2

with H denoting the matrix of the hue channel and N
the total number of pixels in the image.

• Colorfulness It allows to distinguish multi-colored
images from monochromatic, sepia or simply low
contrast images. It is measured using the Earth Mover’s
Distance (EMD) between the histogram of the image and
a flat histogram representing a uniform color distribution,
according to the algorithm suggested by Datta et al. [28].

• Color name Each color is used in many ways by
photographers, accounting for their personal style.
Following [35], we considered the following 11 color
names: black, blue, brown, grey, green, orange, pink,
purple, red, white and yellow. Each image has been
converted to HSV color space: in addition to hue,
saturation and brightness values have been considered,
as proposed by [44]. In practice, we count the number of
pixels falling in the ranges of HSV values corresponding
to a specific color name.

• Entropy We calculated the entropy, a statistical measure
that characterizes the homogeneousness of an image.

• Wavelet textures They are used to measure spatial
smoothness/graininess in images using the Daubechies
wavelet transform as presented in [28], [35]. In practice,
we computed a three-level wavelet transform on all
three HSV channels. The three levels of wavelet bands
are arranged from top left to bottom right, in the
transformed image, and the four coefficients per level
are LL,LH,HL, and HH . Denoting the coefficients

(we do not take into account the LL coefficient) in level
i for the wavelet transform of one channel of an image
as wh

i , wv
i and wd

i , with i = 1, 2, 3, and h = HH ,
v = HL and d = LH , the wavelet features are defined

as: wfi =
∑

x,y
wh

i (x,y)+
∑

x,y
wv

i (x,y)+
∑

x,y
wd

i (x,y)

(|wh
i
|+|wv

i
|+|wd

i
| . This

is computed for every level i and every channel of the
image, thus we get 9 features. The values x, y span over
the spatial domain of the single w taken into account,
and the operator | · | accounts for the spatial area of
the single w. The corresponding wavelet features of
saturation and intensity images are computed similarly.
We extract three more features by computing the sum of
the average wavelet coefficients over all three frequency
level for each HSV channel.

• Tamura These textural features have been developed
to correspond to human visual perception. As in [35],
we kept three of the six available features, namely
coarseness, contrast, and directionality, since they
attained very successful results in mimicking human
perceptive mechanisms.

• Gray-level Co-occurrence Matrix (GCLM) features
GLCM features are an additional way to specify textural
properties of an image. By means of the GCLM we
computed contrast, correlation, energy and homogeneity
of each channel of the image converted in HSV color
space as in [45].

• Edges We focused on the presence or absence of edges,
computed with the Canny edge detector. We considered
the number of edge points; in order to avoid the
dependence from the possible different sizes of images,
the number of edge’s pixels has been normalized by the
total image area.

• Level of detail and regions As shown in the recent
work of [46], [47], objects and scene semantics are
very important to understand the subjective judgement
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of a picture. Following this, we performed image
segmentation collecting some low-order statistics. We
employed the mean shift segmentation algorithm [42],
and in particular the EDISON implementation [43].
After segmenting an image we extracted i) the number
of segments - measuring the regions “density” which
characterizes each image, we can interpret this feature as
the Level of Detail (an image with much detail generally
produce a different psychological effect than minimalist
composition) - and ii) the average extension of the
regions. All the values have been normalized w.r.t. the
total image area.

• Low depth of field (DOF) It corresponds to the
range of distances from a camera for which a photo is
acceptably sharp [28], [35]. It is used by professional
photographers to blur the background, drawing the
attention of the observer to the object of interest which
is sharp. To detect low DOF and macro images we
computed a ratio of the wavelet coefficients in the
high frequency (level 3) of the inner part of the image
against the whole image. We divided the image into
16 equal rectangular blocks M1, . . .M16, numbered
in row-major order. Let w3 = wLH

3 , wHL
3 , wHH

3

denote the set of wavelet coefficients in the high
frequency of the hue image IH . The low depth of field
indicator feature fH for hue is computed as follows,

fH =

∑
(x,y)∈M6∪M7∪M10∪M11

w3(x,y)∑16

i=1

∑
(x,y)∈Mi

w3(x,y)
, with fS and fV

being computed similarly for IS and IV respectively.

• The rule of thirds The rule of thirds in photography
refers to the locations of the picture where the most
interesting visual object is expected to be. Such locations
are four points, which represent the intersections of four
orthogonal lines. Such lines are obtained by equally
dividing each size of the image in three parts, and
connecting the opposite points of subdivision. The rule
of thirds in computational aesthetics is an approximation
of this criterion, supposing that the object of interest is
stretched from an intersection up to the center of the
image, and is obtained by averaging the HSV color values
following the formula 9

XY

∑2X/3
x=X/3

∑2Y/3
y=Y/3 IH(x, y),

and similarly for the other two color channels, with X
and Y indicating the horizontal and vertical size of the
image [28], [35].

• Object Detection Motivated by [46], [47], we employed
the Deformable Part Models [48], [49] system to detect
objects. The algorithm works by detecting and localizing
a specific object (for example a plane, a cat, a chair or
a person), through the use of a model learned from a
set of training examples. The system can detect different
objects; in our approach we retained the number of
times every detectable object is present in the image (for
a complete list of all detectable objects see [47]); we
also retained the average area (the algorithm gives also
the bounding box of the detected objects), to estimate

if objects are more towards the background or the
foreground. We excluded boats, chairs, cows, sheeps,
sofas and tables objects as in the training set they were
never detected.

• Faces As a particular class of objects - which detection
has been largely studied in the field of biometrics - we
extracted the number and size of the faces present in
the image. We employed the standard Viola-Jones face
detection algorithm [50] implemented in the OpenCV
library.

• Scenes. Finally, we focused on describing the semantics
of the whole scene, rather than the semantics of single
objects which appears in it. A very powerful scene
descriptor is the GIST [38], which, roughly speaking,
measures the responses of different Gabor filters.
Such filters are built to describe the category of the
scene in terms of openness, ruggedness, roughness and
expansion2.

The concatenation of all these descriptors, a vector xm of 111
elements, represents the proposed signature for the image m.
Since every feature has a very heterogeneous range of values,
each feature/dimension is normalized across the images to
have zero mean and unit standard deviation. More details are
given in the experimental section.

It is worth noting that for the sake of reproducibility,
every parameter of the different off-the-shelf computer vision
libraries has been left as the default setting.

B. Learning the preference model

The preference model for the user i, is built starting from
a set of N favorite images (that is, their D-dimensional
feature vectors) x

(i)
1 , . . . ,x

(i)
N , representing the biometrical

trait X(i) = {x(i)
1 , . . . ,x

(i)
N } In our case, D = 111.

Given the biometrical trait X(i), we can build the template
as follows. First, we partitioned his favorite images in two sets,
one for the training, X(i)

tr , composed by Ntr images, and one
for the testing, X(i)

te , composed by Nte images. We will see in
the next section how crucial is the choice of the value of Ntr

and Nte. In the following, we will also say that the images
X

(i)
tr will define the gallery biometrical trait for the user i,

while the images X(i)
te will define the probe biometrical trait

for the user i.
Since we are interested in characterizing which are the

particular personal tastes of the given user, we decided to
train a binary classifier, using as positive examples X(i)

tr and
as negative the favorites of other Flickr users {X(j)

tr }j 6=i: this
will permit to extract what really makes the subject different
from the others. In particular, we represent the discriminative
aesthetical aspects of each user as a subset of all the features
considered, opportunely weighted. To do that, we perform a
sparse regression analysis using Lasso [51]. Lasso is a general

2The code is publicly available on http://people.csail.mit.edu/torralba/code/
spatialenvelope/

http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://people.csail.mit.edu/torralba/code/spatialenvelope/
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form of regularization in a regression problem. In the simple
linear regression problem, every n-th training image, described
by the proposed feature vector xn, is associated with a target
variable yn (a positive label is given to all training images
coming from user i, that is, the one we want to characterize,
whereas the favorites of other users j, j 6= i, have a negative
label). Then, we can express the target variable as a linear
combination of the image features:

yn = w(i)Txn (1)

The standard least square estimate calculates the D-
dimensional weight vector w(i) = by minimizing the error
function

E(w(i)) =

NTR∑
n=1

(
yn −w(i)Txn

)2
(2)

where in our case NTR corresponds to the total number of
images of all the users we have in the training set. The
regularizer in the Lasso estimate is simply expressed as a
threshold on the L1-norm of the entries {wd}d=1,...,D of the
weight w:

D∑
d=1

|wd| ≤ t (3)

This term acts as a constraint that has to be taken into account
when minimizing the error function.

By doing so, it has been proved that (depending on the
parameter t), many of the coefficients wd become exactly zero
[51]. Since each component wd of the weight vector weighs a
different feature, it is possible to understand which features
are the most important for a given user, and which ones
are neglected. By looking at the values in the “user-specific”
weight vector w(i) for user i, we have that only the most
important image features that characterize the preferences of
that user are retained. Therefore, we can call w(i) the template
for user i.

More in detail, a positive weight for a feature indicates that
in the pool of preferred images of a user that feature is present,
and is discriminative for the user. Vice versa, the presence of
a negative weight for a feature indicates that a presence of a
particular feature for a user is unlikely, and this could well
characterize him.

C. The matching score

At this point, we may want to match the probe biometrical
trait of the user j, represented by his positive testing images
X

(j)
te with the gallery biometrical trait of the user i, represented

by his positive training images X(i)
tr .

Intuitively, a single image does not contain every facet of
the visual aesthetics sense of a person; the idea is to consider
a set of testing images, and guess if the set contains enough
information to catch the preferences of the user, allowing to
identify him among all the others. Given a template w(i) of the
user i, the matching score is aimed at measuring how likely
the set X(j)

te of the user j contains images which are in accord
with those favorites by the user i. In order to determine it, we

compute for every image x
(j)
n ∈ X

(j)
te the regression score

β
(i,j)
n , as described by eq. 1:

β(i,j)
n = w(i)T x(j)

n (4)

Then, the final matching score for the whole set (the biomet-
rical trait) is determined as the averaged regression scores of
the images belonging to it, i.e.:

β(i,j) =
1

Nte

Nte∑
n=1

β(i,j)
n (5)

III. EXPERIMENTS

In this section the experimental evaluation is proposed. In
particular, we first present the dataset, followed by authen-
tication and recognition results. Finally some interpretability
issues are reported.

A. Data collection

To test our approach, we consider a real dataset of 40000 im-
ages, belonging to 200 users chosen at random from the Flickr
website. For each user, we retained the first 200 favorites3.
Please note that the process of adding favorites is a continuous
time process, which can last for months. In particular, in our
dataset, the minimum amount of time elapsed from the oldest
and the newest favorite is 23 weeks (the maximum is 441
weeks) – this ensuring reliable multisession acquisitions. For
all the images of the dataset we computed the image signature.
In order to guarantee robust testing, we randomly split the
images of each user into two parts, one used to build the
gallery biometrical trait Xtr, and, consequently, its template
and one used to build the probe trait Xte, needed for testing
the algorithm. Since the value ranges are very heterogeneous,
each feature is normalized across all training images to have
zero mean and unit standard deviation (note that the testing
set is normalized with the constants calculated on the training
set). In all experiments, the parameter t of the Lasso has been
determined by crossvalidation.

B. Authentication results

In this section the system is tested in an authentication
scenario: a ROC curve is computed for every user j, where:
• client images are taken from the probe set of the user j
• impostor images are taken from all the other probe sets
In particular, different kinds of client/impostor signatures

may be built, depending on the number of images we take into
account: in detail, the smallest signature is formed by a single
image; pooling together more pictures gives rise to composite
signatures, intuitively carrying more information. Matching
a signature composed by more than one image occurs by
following what is described in Sec. II-C, i.e., roughly speaking,
by averaging the matching scores derived from the set of probe
images. Given an “authentication threshold”, i.e. a value over
which the subject is authenticated, sensitivity (true positive

3The dataset is available upon request at
http://profs.sci.univr.it/∼cristanm/projects/perpre.html

http://profs.sci.univr.it/~cristanm/projects/perpre.html
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Fig. 2. ROC curves for the user authentication, varying the number of images
per signature. Each ROC curve has been obtained by averaging over all the
ROC curves for each user.

rate) and specificity (true negative rate) can be computed. By
varying this threshold the ROC curve is finally obtained.

In Fig. 2 the authentication ROC curves are portrayed; in
addition, we reported also the area under the curve (AUC) and
the averaged equal error rate (EER), namely, the error when
sensitivity and 1-specificity have an equal value. Typically,
these values represent a compact and meaningful way to
summarize the ROC curve.

As expected, augmenting the images per signatures incre-
ments the performance. This confirms the suitability of using
this trait as a biometrical trait, even if, as all behavioral
biometrics, with a not so outstanding performance.

C. Recognition results

In this section the recognition capability of the proposed
biometrical trait is investigated. In particular, given a probe
image or a set of probe images, we want to guess the gallery
user who tagged them. To do that, we compute the matching
score of the probe image (or set) using all the templates
{w(i)}. Hopefully, the gallery user with highest score is the
one who originally faved the photo (or group of photos).

In order to evaluate the recognition rate, we built a CMC
curve [52], a common performance measure in the field of
person recognition/re-identification [53]: given a probe set of
images coming from a single user and the matching score
previously defined, the curve tells the rate at which the correct
user is found within the first k matches, with all possible k
spanned on the x-axis. Fig. 3 shows various CMC curves for
our dataset, where the curves have been obtained by averaging
the CMC curves of 20 different experiments with different
gallery/probe splits.

On the left, we reported four different CMCs, varying the
parameter Nte, which tells how many images are aggregated

Protocol rank 1 rank 5 rank 20 rank 100
1 probe image 0.063 0.188 0.408 0.829
5 probe images 0.143 0.399 0.688 0.966

20 probe images 0.254 0.629 0.883 0.998
100 probe images 0.359 0.796 0.970 0.999
5 gallery images 0.076 0.236 0.496 0.889
10 gallery images 0.113 0.322 0.628 0.948
20 gallery images 0.152 0.443 0.743 0.971
50 gallery images 0.225 0.578 0.838 0.995

TABLE II
CMC VALUES FOR DIFFERENT RANKS. VALUES REPRESENT THE

PROBABILITY OF HAVING THE CORRECT MATCH WITHIN THE FIRST
1-5-20-100 SIGNATURES, CONSIDERING DIFFERENT NUMBERS OF PROBE
(FIRST 4 ROWS OF THE TABLE) AND GALLERY IMAGES (LAST 4 ROWS OF

THE TABLE).

to form a single probe object, while keeping the number of
gallery images fixed to 100.

From the figure it is evident that performing the task of
identifying correctly a user with a single image (black dotted
line) is very difficult. However, as soon as the number of
probe images grouped together increase a little, a consistent
improvement can be noted. This is in line with our hypothesis:
we are aggregating information from heterogeneous images,
each one characterizing only a small portion of the user
subjective tastes.

On the right, we assessed the importance of the gallery set
size Ntr by keeping the probe parameter Nte fixed to 20. As
expected, by lowering the number of gallery elements, it is
more difficult to learn the users’ preferences and their aesthetic
sense uniqueness. For both figures, the normalized Area Under
the Curve (nAUC) has been reported in the legend.

As a further comment, it is also worth noting that, even
if at CMC rank 1 we achieve in the worst case a 6.3% rate
of correct identification, this is higher than the probability of
recognizing the user by mere chance (which amounts to 0.5%).

A final interesting question can be made: how is our signa-
ture when compared to other biometrical cues? Having clear
in mind that realizing a proper and exhaustive comparison is
not so trivial, we would like to provide here some intuitions.
We focus on the field of people re-identification, where the
signature of a user is composed by set of his full-body images
(i.e., the appearance). In particular, we take into account
the experiment done on the CAVIAR4REID dataset in [53],
where multiple methods of re-identification have been tested
on small images of people (averagely, around 50×120 pixel).
In order to create a fair comparison with the CAVIAR4REID
re-identification experiment, we randomly select the same
number of users (72) and we used 5 images for the gallery, 5
for the probe, repeating the experiments 10 times. In our case,
we obtain an nAUC of 74.8%, whereas with the classical re-
identification approaches the n-AUC (reported in the paper) is
78.5%. This result is quite intriguing, as it states that having
images chosen and marked by an user as his favorites is not
too far from actually looking at that subject directly. This
witnesses the potentiality of our biometrical strategy.

D. Feature analysis
This section is aimed at providing a qualitative evaluation

of the proposed approach, showing that the regression score
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Fig. 3. CMC curves for our dataset: the curves have been obtained by averaging the CMC curves of 20 different experiments with different gallery/probe
splits. On the left: for each curve, we varied the number of probe images to be considered as a single “set”, while keeping the number of gallery images fixed
to 100. On the right: for each curve, we varied the number of gallery images used to train Lasso, while keeping the number of probe images to 20. Since
we performed 20 random splits of gallery/probe, we report also the standard deviation of results. Table II reports more in detail the values of both curves at
rank 1-5-20-100, in order to provide a better quantitative idea of the probability of having the correct match within the first 1-5-20-100 signatures.

β provides a valid measure of the preferences of a user,
while the weight coefficients in the vector w provide an
interpretable description for his visual aesthetic sense. In the
first experiment, given the gallery user i, we considered all
the probe images of all the users {j}, and we sorted them
according to their regression score β(i,j). The higher the score
of an image, the higher the probability that the user may have
actually faved that image. Fig. 4 gives an excerpt of the results;
each column corresponds to a different Flickr user i; given
the template of that user, the first 10 rows are the favorite
gallery photos which exhibit high regression scores, ranked in
descending order from the highest one. In other words, these
10 images are the ones which better represent the user i, as
modeled by the related template. The second 10 images are
taken from the probe images of all the users (not only from
user i), which exhibit the 10 highest regression scores (again,
w.r.t the template of the user i), with a blue frame indicating
actually those images which belong to that user.

The figure reveals some interesting information: although
the highest test image for the template of the user is not on
his favorites set, it can have some visual appeals reflected
on some of the images on his gallery set (see for example
the black and white faces and scenes in the first column, or
the airplanes in the second). It seems that a sort of “internal
coherence” starts to show up.

We then looked into the weight coefficients for some users
after learning the sparse regression model. For 2 random users,
we reported the vector w in Fig. 5, on the right of their gallery
and predicted preferred images. For visualization purposes, we
labeled the most prominent features (i.e. the ones with highest
– in absolute value – weight value):

For user 41, the rule of thirds (i.e., its computational
aesthetics version) plays an important role, and actually most
of his images report an object in the central rectangle of the
image. This is visible also in the probe images, selected by
regression among the probe images of all the users; all the
images appear with high luminosity, and the same happens in

the probe images of that user. Note also that there are few
regions in the gallery/probe images, this being reflected by
the corresponding negative weight. For user 182, faces, the
white color, hue homogeneity and edge/textural properties are
important, and this is visible since many black/white images
of many people (many edges/textures) characterize his favorite
set of shots. Similarly, probe images which conform with the
classifier of that user report faces and edgy pictures, some
of them with few colors (high hue homogeneity), with a
strong presence of white. The negative weight on aspect ratio
indicates that images composing the favorite set of user 182
are more “rectangular” than the preferred images of others.

IV. CONCLUSIONS

The key idea of this article is that the cognitive mechanisms
that regulate the appreciation of an image are personal and
unique, and that their distillation can provide an interesting
soft-biometrical trait. To this aim, we used a typical learning
approach, considering images tagged as “favorite” by a certain
person as training data, incorporating the expression of her
aesthetic preferences. In the experiments we validated this
intuition with a consistent amount of pictures taken from
Flickr, showing thus that personal aesthetic traits may be
collected and managed easily from the social web. To the
best of our knowledge, such a perspective has never been
adopted in a forensic technology context before. The probable
reason is that multimedia data became an interaction channel
only recently, when the diffusion of appropriate technologies
for data production (cameras, smartphones, tablets, etc.) and
consumption (social media, digital libraries, etc.) made it
possible to exchange multimedia data as easily as we pre-
viously exchanged written material (letters, messages, etc.)
[54]. Our proposal could be interesting for several aims:
apart from the design of a classical biometric system, where
personal aesthetics may support other stronger biometrical
cues, other applications can be thought of: for example, ex-
ploiting eye tracking devices, the spatio-temporal patterns with
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Fig. 4. Gallery and recognized probe images for different users. Each column is a user, and the first 10 images come from his gallery set. In the half-bottom
part, we show the first 10 probe images for that user, ranked on the basis of their regression score (the first being the one with highest score). In blue, correct
matches are highlighted. A “coherence” between gallery and probe images can be seen.
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Fig. 5. Most prominent features for 2 users taken from the dataset. On the left, for each user, a bar plot of each feature’s importance is shown. The height
of each bar represents the value of the corresponding weight, and the standard deviation along the 20 different experiments on different partitions is also
visualized. On the right, gallery and probe elements are shown, in the same fashion of Fig. 4.

which preferred images are explored may enrich and reinforce
the biometrical traits. Even more pioneering, analyzing the
subjective preferences of a person may unveil the interplay
between personality traits and image features [55], which can
bring in ethical aspects ignored so far. As future work, we
will analyze different user populations, exploring how socially
interrelated users may exhibit similar aesthetical signatures:
for example, the judgement of attractiveness of a face has
been shown to be correlated among people connected by tight
personal relations, as siblings, spouses, close friends [21];
this may have a negative impact on our biometrical strategy,
augmenting the probabilities of breaking our biometric system.
Technically, we will take into account the rule that each image
may have in the definition of the aesthetical preferences of
a user: not all the images will intuitively have the same
importance, and this could be modeled by Multiple Instance
Learning techniques, recently employed for person recognition
tasks [56]. We will also design prototypes of authentication
and recognition interfaces, so that user usability studies can

be performed, toward a real deployment of this new biometric
strategy.
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